Höhere Mathematik – die neusten Beiträge

Ist das richtig gerechnet?

Moin,

Kann bitte jemand korrigieren ob ich das richtig ausgerechnet habe?

Hier der Rechenweg:

a) Funktionsgleichung von p1p_1

Gegeben: A(2|3), B(4|-1)

Ansatz: y=ax2+bx+cy = ax^2 + bx + c

1. Gleichung mit A:

3=a⋅22+b⋅2+c=4a+2b+c3 = a \cdot 2^2 + b \cdot 2 + c = 4a + 2b + c

2. Gleichung mit B:

−1=a⋅42+b⋅4+c=16a+4b+c-1 = a \cdot 4^2 + b \cdot 4 + c = 16a + 4b + c

Jetzt subtrahieren:

(16a+4b+c)−(4a+2b+c)=−1−3(16a + 4b + c) - (4a + 2b + c) = -1 - 3

12a+2b=−412a + 2b = -4

→ durch 2: 6a + b = -2 → (I)

Setze in 1. Gleichung ein:

3=4a+2(−2−6a)+c3 = 4a + 2(-2 - 6a) + c

3=4a−4−12a+c3 = 4a - 4 - 12a + c

3=−8a−4+c3 = -8a - 4 + c

c = 3 + 8a + 4 = 8a + 7

Nimm z. B. a = -1

Dann: b = -2 - 6(-1) = 4*, c = 8(-1) + 7 = -1*

Lösung:

p1(x)=−x2+4x−1p_1(x) = -x^2 + 4x - 1b) Funktionsgleichung von p2p_2

Scheitelpunkt: S(3|4), nach unten geöffnet

Ansatz: y=a(x−3)2+4y = a(x - 3)^2 + 4

Nimm z. B. a = -1 (weil nach unten)

Lösung:

p2(x)=−(x−3)2+4p_2(x) = -(x - 3)^2 + 4c) Nullstellen von p3(x)=x2+2x−3p_3(x) = x^2 + 2x - 3

pq-Formel:

x2+2x−3=0x^2 + 2x - 3 = 0 → p=2p = 2, q=−3q = -3

x1,2=−22±(22)2−(−3)=−1±1+3=−1±2x_{1,2} = -\frac{2}{2} \pm \sqrt{\left(\frac{2}{2}\right)^2 - (-3)} = -1 \pm \sqrt{1 + 3} = -1 \pm 2x1=1,x2=−3x_1 = 1,\quad x_2 = -3Lösung:

N1(1∣0),N2(−3∣0)N_1(1|0),\quad N_2(-3|0)d) Schnittpunkte von p3p_3 und p4p_4

p3(x)=x2+2x−3p_3(x) = x^2 + 2x - 3

p4(x)=−x2+2x+5p_4(x) = -x^2 + 2x + 5

Gleichsetzen:

x2+2x−3=−x2+2x+5x^2 + 2x - 3 = -x^2 + 2x + 5x2+x2=8⇒2x2=8⇒x2=4⇒x=±2x^2 + x^2 = 8 \Rightarrow 2x^2 = 8 \Rightarrow x^2 = 4 \Rightarrow x = ±2Einsetzen in p3p_3:

x=2:y=4+4−3=5x = 2: y = 4 + 4 - 3 = 5

x=−2:y=4−4−3=−3x = -2: y = 4 - 4 - 3 = -3

Lösung:

Schnittpunkte:(2∣5)und(−2∣−3)Schnittpunkte: (2|5) und (-2|-3)e) Scheitelpunkt von p3p_3

y=x2+2x−3y = x^2 + 2x - 3

In Scheitelpunktform umwandeln:

y=(x+1)2−1−3=(x+1)2−4y = (x + 1)^2 - 1 - 3 = (x + 1)^2 - 4Scheitelpunkt:

S(−1∣−4)S(-1|-4)f) Zeichnung von p3p_3
  • Scheitelpunkt: S(-1|-4)
  • Nullstellen: x = 1 und x = -3
  • y-Achsenabschnitt: x = 0 → y = -3
  • Symmetrieachse: x = -1
  • Weitere Punkte:
  • x = -2 → y = -3
  • x = 2 → y = 3
Bild zum Beitrag
rechnen, Funktion, Formel, Gleichungen, höhere Mathematik, Mathematiker, Nullstellen, quadratische Funktion, Funktionsgleichung, Parabel, quadratische Gleichung

Mathe - welche Variante gibt Punkt bei der Matura?

Gegeben ist folgendes Beispiel:

Der Wasserspiegel eines Sees und ein Haus liegen in einer Horizontalebene.

Von einem

h Meter über dem Boden befindlichen Fenster des Hauses erscheint das diesseitige Ufer des Sees unter dem Tiefenwinkel Alpha, das jenseitige Ufer unter dem Tiefenwinkel Beta.
Erstellen Sie mit x, a und ß eine Formel zur Berechnung der Breite b des Sees.

Der Ansatz laut Lösung:

In beiden gegebenen rechtwinkeligen Dreiecken h berechnen und anschließend gleichsetzen.

1

tan(alpha) = h/x

h = x • tan(alpha)

2

tan(beta) = h/x+b

h = (x+b) • tan(beta)

3

x • tan(alpha) = (x+b) • tan(beta)

x • tan(alpha) - x • tan(beta) = b • tan(beta)

b = x • tan(alpha) - tan(beta) / tan(beta)

Mein Ansatz wäre:

Zuerst x berechnen

tan(alpha) = h/x

x • tan(alpha) = h

x = h/tan(alpha)

x + b berechnen

tan(beta) = h/(x+b)

(x+b) • tan(beta) = h

(x+b) = h/tan(beta)

x von x+b abziehen um b zu erhalten

b = (x+b) - x

b = h/tan(beta) - h/tan(alpha)

Wenn man für alpha, beta und h Zahlen einsetzt erhält man in beiden Fällen dasselbe Ergebnis.

Da ich hier aber nur eine Formel zur Berechnung von b erstellen soll wäre meine Frage ob bei der Matura beide Varianten gleich bewertet werden oder ob nur die eine Variante aus den Lösungen als „richtig“ anerkannt wird und man nur dafür den/die Punkte erhält ?

Bild zum Beitrag
rechnen, Funktion, Formel, Gleichungen, höhere Mathematik, Mathematiker, Sinus, Trigonometrie, Cosinus, Tangens

Meistgelesene Beiträge zum Thema Höhere Mathematik