Exponentielles Wachstum, kleine Zeiteinheiten?

Also was zuvor gesagt wurde, wenn man bei x0*(1+p)^t die Zeit t so runterskaliert, dass man z.B, die minütl. Änderung will, wenn △t=1 eine Std. ist und p der std. Zuwachs, also der gleiche Stundenzuwachs ist dann x0*(1+(p/60))^(t*60), hat aber nicht dasselbe Ergebnis wie oben, sondern nähert sich x0*e^p an. Das war anscheinend die Herleitung für diese Folie.

Ich versuche mal zu erklären, was ich vielleicht verstehe, am Ende sind die Fragen.

Die erste Zeile bedeutet, dass man den Zuwachs pro t durch n teilen muss, wenn es hier nur um △t/n geht.

Die Zweite bedeutet, dass der Unterschied △x ca. das alte x mal die Zuwachsrate in der angegebenen Zeit ist. Das kann man umformen in etwas (Sekante?), was als Herleitung einer Differentialgleichung in der nächsten Folie dient, also die zeitl. Änderung.

Meine Frage:

Ich verstehe irgendwie die Interpretation im Kasten nicht ganz. Warum ist das nur für sehr kurze Zeiträume? Und was bedeutet das mit dem kontinuierlich? Ist ein Exponentieller Graph nicht sowieso kontinuierlich? Oder meint man das so, dass es unendlich viele Messwerte gibt, und es keine Zeitsprünge zwischen den Messwerten gibt, weil es einen für jedes unendlich kleines △t gibt, und die Variable t so kontinuierlich wird?

Bild zum Beitrag
Mathematik, Differentialgleichung, rechnen, Funktion, Ableitung, Änderung, Exponentialfunktion, Formel, Gleichungen, höhere Mathematik, Mathematiker, Wachstum, Analysis
Elastizitätsmodul von Messing (graph) darstellen?

Leute, ich bin ein bisschen verwirrt. Ich habe hier eine Aufgabe bekommen womit ich einen Graphen erstellen soll mit SciDavis, allerdings bin ich ein bisschen überfordert.

Es soll ja so ein Messing graph sein, also so ein hin her schwingen zwischen starken Anstieg des Graphen und starken Abfall. aber ich weiß halt nicht wie ich es berechnen soll.

____________________________

Das ist die Aufgabe:

Ein Messingstab mit einer Gesamtlänge L=(1,001+0,002)m, einer Masse m=(0,9505+0,0001)kg und mit einem Durchmesser von d=(1,210±0,006)cm und entsprechenden R als Radius. Auf der anderen Seite wird ein Gewichte M=(0,500+0,001)kg in unterschiedlichen Abständen L_i, zum Halterungspunkt angehängt und die Auslenkung s des Stabes gemessen Ziel der Messung ist es, das Elastizitätsmodul E des Materials zu bestimmen.

s = 4/(3pi) * (L_{i} ^ 3)/(E * R ^ 4) * g*M

Die Messunsicherheit für L, beträgt Delta L-±0,002m und für die Auslenkung Delta s=+0,1mm

Punkte:

L_i(m). | s(mm)

0,073. | 1,4

0,135. | 3,0

0,221. | 4,8

0,357. | 7,3

0,528. | 11,2

0,715. | 16,1

____________________________

Ich habe am Anfang Li und s erstmal als graph dargestellt, es war fast eine lineare Funktion, dann ist mir aber aufgefallen das die y Achse eigentlich nicht s sonder E (Elastizitätsmodul) sein soll.

Ich bin mir nicht sicher wie ich es berechnen soll, ich habe die Formel

s = 4/(3pi) * (L_{i} ^ 3)/(E * R ^ 4) * g*M

Benutzt und s und E verstaucht. Und alles eingesetzt. Ich bekam dann die punkte für E heraus aber ich weiß nicht ob es richtig ist, denn es sieht so ähnlich aus wie ein Exponentialfunktion. Bin ich auf dem richtigen Weg?

Und ich soll übrigens ja auch die Messunsicherheit messen, ich bin schon sowieso etwas verwirrt welche Formeln ich benutzen muss für die Messunsicherheit.

Kann mir wer helfen?

Bewegung, Mathematik, Geschwindigkeit, Wissenschaft, Beschleunigung, Exponentialfunktion, Formel, Mechanik, Messing, Messung, Physik, Unsicherheit, Graphen, Messungen

Meistgelesene Beiträge zum Thema Exponentialfunktion