Wahrscheinlichkeit beim Ziehen mit Zurücklegen - zwei mögliche Ansätze (Urnenmodell)?

Die gegebene Aufgabe ist: Eine Urne ist mit q schwarzen und r roten Kugeln befüllt. Es wird mit Zurücklegen und ohne Berücksichtigung der Reihenfolge gezogen.

Wie hoch ist die Wahrscheinlichkeit, beim Ziehen von l+m Kugeln genau l schwarze und m rote Kugeln zu ziehen?

Mein 1. Ansatz:

Einführen einer Zufallsgröße X, die die schwarzen gezogenen Kugeln zählt und binomialverteilt ist mit n = q+r und p = l/(q+r). Die gesuchte Wahrscheinlichkeit ist nun P(X=l). Ist dieser Ansatz so korrekt?

Mein 2. Ansatz:

Prinzipiell kann man ja auch damit arbeiten, dass bei Laplace Experimenten die Wahrscheinlichkeit berechnet werden kann, indem man die Anzahl an günstigen Ergebnissen durch die Anzahl an insgesamt möglichen Ergebnissen teilt.

Es gibt insgesamt (q+r)^(l+m) / (l+m)! Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge).

Es gibt (q)^(l) / l! Möglichkeiten, aus q Kugeln genau l Kugeln auszuwählen. Und es gibt (r)^(m) / m! Möglichkeiten, aus r Kugeln genau m Kugeln auszuwählen. Folglich gibt es ((q)^(l) / l!) * ((r)^(m) / m!) Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge. Die Terme sind analog zum Fall ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge aufgestellt).

D.h. die gesuchte Wahrscheinlichkeit lässt sich auch als

(Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen)/(Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen)

= ( (q+r)^(l+m) / (l+m)!) /
((q)^(l) / l!) * ((r)^(m) / m!) ) ausdrücken, oder?

Ist das so korrekt, oder sind mir irgendwo Fehler unterlaufen? Sind beide Ansätze zulässig?

Schule, Mathematik, rechnen, Gleichungen, Gymnasium, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Erwartungswert, Kombinatorik, Rechenweg
Alternativtest Hypothesentest Alpha/Beta Fehler?

Hallo, ich lerne gerade, wie man den alpha und beta fehler berechnet bei einem Alternativtest.

z.B. haben wir n=20, 

Wenn man den Annahme bzw. Ablehnungsbereich von H_0 berechnen will, ergibt sich durch Ausprobieren des kritischen Werts "k", dass k=4 mit p_1=0,4 P=0,0509% ergibt, weil für k=5 schon P=0,1255 ist und die 10% Schwelle von p_0 übersteigen würde.

Wenn ich nun den Alpha fehler berechnen will, muss ich das ja über den Ablehnungsbereich machen. Das heißt, wir haben hier einen Ablehnungsbereich von [5;30] für H_0. Also rechnen wir P(x≥5) mit p_0=0,1 und erhalten 4,3%. Diesen Fehler möchten wir ja in Kauf nehmen aber den Beta Fehler unbedingt vermeiden.

Der beta fehler als Fehler 2. Art ergibt sich wenn wir das ja über den Annahmebereich berechnen also P(x ≤4) mit p_1=0,4 und erhalten 5,1%.

Aber was ist nun, wenn der Ablehnungsbereich von H_0 nicht rechts, sondern links ist? Weil der ist ja hier offensichtlich im rechten Bereich. Wie berechne ich dann Alpha/beta Fehler? Wie gesagt kann man den alpha Fehler ja berechnen, wenn man diesen über den Ablehnungsbereich berechnet. Gilt das dann hier für H_1, weil der Ablehnungsbereich von H_1 auf der rechten Seite ist? Also müssten wir P(x≥5) rechnen mit p_1=0,1

(wenn  )? Oder müssten wir in jeden Fall IMMER ÜBER DEN ABLEHNUNGSBEREICH VON H_0 den alpha fehler rechnen??

rechnen, Funktion, Ableitung, Formel, Gleichungen, höhere Mathematik, Mathematiker, Nullstellen, quadratische Funktion, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Bernoulli, Beweis, Binomialverteilung, Funktionsgleichung, hypothesentest, Analysis
Abiturstochastik killt mich?

Frohe Ostern allesamt. Ich habe ein massives Problem. Hypothesentests und vor allem der Fehler Zweiter Art (Nullhypothese annehmen, obwohl falsch).

Sagen wir so, es hat mich schon viel zu lange gedauert, um den Fehler Erster Art zu verstehen (Zugegebenermaßen brauche ich immer noch einen Moment, um es Intuitiv zu verstehen). Doch spätestens der Fehler Zweiter Art bzw. β verursacht bei mir nen Kurzschluss; so sehr sogar, dass ich das Gefühl hab, der gesamte Matheleistungskurs lacht mich aus. Ich geb euch mal sinngemäß die Aufgabenstellung:

  • "Der Großhändler gibt an, dass mind. 95% seiner Teile funktionieren. In einer Stichprobe von 500 Teilen will eine Gruppe das Gegenteil beweisen."
  • Signifikanzniveau α = 0.1;
  • n = 500;
  • p0 ≥ 0.95;
  • p1 < 0.95;
  • X: #guteTeile;
  • X ist B(500 ; 0.95)-verteilt;

a) Formuliere eine Entscheidungsregel, wann H0 abgelehnt wird. Also mache ich P(X ≤ g) ≤ 0.1 und finde heraus per TR, dass ich bei weniger als 467 Teilen (hab die genaue Zahl nicht mehr im Kopf) sage, dass der Großhändler die Unwahrheit sagen muss.

b) Die genaue α bei g = 466 läge bei 9,4%.

c) Und ab hier verstehe ich nichts mehr...

In einer Stichprobe kam heraus, dass tatsächlich nur 92% der Teile funktionierten. Bestimme die Wahrscheinlichkeit, dass trotzalledessen fälschlicherweise die Nullhypothese angenommen wird.

  • → bleibt meine Nullhypothese: p0 ≥ 0.95?
  • → warum sagen die Lösungen im Buch, dass ich rechtsseitig Testen muss?
  • → Wie kommt das Buch auf die Grenze g = 468?
  • → was zum Teufel will diese Aufgabe von mir? Was soll ich herausfinden? Denn Annahmebereich für die/eine Nullhypothese? Die Wahrscheinlichkeit, dass ich im Annahmebereich derer Liege? Müsste die Nullhypothese dann nicht die p0 ≤ 92% sein?

Falls irgendjemand hier den Nerv hat, einem Zwölftklässler diese Problematik wie einem idiotischen siebenjährigen Kind zu erklären und mir dabei irgendwie helfen kann, wäre ich sehr sehr dankbar. Ich spreche von Grundliegenden Verständnisproblemen und einem riesigen Knoten in meinem Kopf.

Dankeschön!! Ich hoffe, ich habe nichts vergessen in der Aufgabenstellung.

Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Bernoulli, Binomialverteilung
Binomialverteilung bei Münzen?

Hi hat jemand einen Ansatz für D und E?

Deutsche Euro-Münzen werden an funf Standorten geprägt. 21% aller Münzen tragen ein „J", was auf die Prägung in Hamburg hinweist. Ein Erwachsener hat in seiner Geld- börse 46 Münzen. Die Zufallsgröße X zählt die Anzahl der in Hamburg geprägten Münzen in der Geldbörse des Erwachsenen und wird als binomialverteilt angenommen.

d) Eine weitere Prägeanstalt befindet sich in Karlsruhe. Es ist bekannt, dass die Wahrscheinlich- keit, dass sich mindestens 5 Münzen aus Karlsruhe unter den 46 Münzen befinden, 79,04% beträgt. Bestimmen Sie auf Basis dieser Angabe die Wahrscheinlichkeit dafür, dass eine deut- sche Euro-Münze aus Karlsruhe stammt.

e) 2€-Münzen werden von Banken in Rollen von 25 Stück verpackt. Eine dritte Prägeanstalt ist in Stuttgart beheimatet. Es ist bekannt, dass die Wahrscheinlichkeit, dass von 20 Rollen min- ⚫ destens 10 Rollen mindestens 6 Münzen aus Stuttgart enthalten, 82, 17% beträgt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass eine Münze aus Stuttgart stammt.

hab bis jetzt nur für Werte

p =79,04%

n 46

x =5

wenn überhaupt richtig (?)

aber keine Ahnung was ich wie wo einsetzen muss.

rechnen, Funktion, Ableitung, Formel, Gleichungen, höhere Mathematik, Mathematiker, Nullstellen, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Bernoulli, Beweis, Binomialverteilung, Funktionsgleichung, Analysis
Baumdiagramm?

Hallo, kann mir jemand erklären, wie das Baumdiagramm zur folgenden Aufgabe aussehen soll? Ich sitze schon seit Ewigkeiten an der Aufgabe und komme nicht darauf.

Ich habe mir zunächst überlegt, dass E (Für einen Kandidaten entscheiden) * J (Jungwähler bzw. Wahlberechtigt) = 44% ergeben muss. Daher muss als Gegenwahrscheinlichkeit E_ (Gegenteil von E) * J_ (Gegenteil von J) = 56% ergeben.

Hinzu kommt, dass wir die Angabe 12% haben. Ich habe das so verstanden, dass jeder Siebte der Befragten, die nicht entschieden haben, Jungwähler sind und der Anteil dessen diese 12% sind. Im Baumdiagramm könnte man dann ganz einfach die Gegenwahrscheinlichkeit 88% eintragen für E_*J_. Wir wissen ja schon, dass die Gegenwahrscheinlichkeit von den 44% zuvor 56% sind. Also könnten wir doch einfach hier 0,56/0,88 berechnen, sodass wir für den 1. Pfad für E_ ca. 64% bekommen. Für E ergäbe sich dann 36%. Jetzt kommt das Problem... Wir wissen ja dass wir dann noch diese 44% haben und entlang des Pfades können wir diese 36% mit irgendwas multiplizieren, sodass wir eben diese 44% bekommen. Und da bekomme ich, wenn ich 0,44/0,36 rechne, 1,22 raus. Das kann natürlich unmöglich sein. Deshalb bitte ich euch um Rat.

Bild zu Frage
rechnen, Zahlen, Funktion, Formel, Geometrie, Gleichungen, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Erwartungswert, Rechenweg, Analysis
Stochastik Normalverteilung Aufgabe ist verwirrend gestellt?

Hallo, die Aufgabe lautet:

Das Gewicht von Eiern freilaufender Hühner auf eine, Bauernhof ist normalverteilt mit Erwartungswert E(x)= 55g und Standardabweichung Sigma=5g. Das Gewicht der Eier wird auf volle Gramm-Zahlen gerundet.
Bestimmen Sie die Wahrscheinlichkeit, dass ein beliebig aus diesen Eiern ausgewähltes Ei

(1) mindestens 45g, höchstens 53g;

(2) mindestens 45 g;

(3)höchstens 50g;

(4)genau 60g wiegt.

als Hinweis steht da noch: „Beachten Sie: Das Ergebnis in Teilaudgabe 1 bedeutet, dass das Gewicht mindestens 44,5 g aber weniger als 53,5g beträgt.“

ich würde jetzt denken, dass man da ja keine Stetigkeitskorrektur mit +- 0,5 braucht, da man das ja nur benutzen muss, wenn in der Aufgabe steht, dass es binomialverteilt ist, d.h. man braucht die Stetigkeitskorrektur nur wenn man durch die Normalverteilung die Binomialverteilung annähern will. Also muss man diese Werte einfach in den Taschenrechner ohne Stetigkeitskorrektur eingeben, weshalb dieser Hinweis eigentlich keinen Sinn ergibt.

was ist nun richtig?

Studium, Schule, Mathematik, rechnen, Funktion, Abitur, Ableitung, Formel, Gleichungen, Gymnasium, Mathematiker, Oberstufe, Schulabschluss, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Abiturprüfung, Bernoulli, Binomialverteilung, Erwartungswert, Funktionsgleichung, Normalverteilung, Rechenweg, Wahrscheinlichkeitsverteilung, Analysis
Binomialverteilung / Poisson-Verteilung?

Hallo Zusammen,

Ich habe eine Frage zu einer spannenden Statistik Aufgabe, welche mit der Binomialverteilung und mit der Poisson-Verteilung zu lösen ist:

Eine Fluggesellschaft rechnet mit einer Wahrscheinlichkeit von 4%, dass ein Fluggast mit einem gekauften Ticket nicht erscheint.
Deshalb wird der Flug mit 75 von 73 verfügbaren Plätzen überbucht.

Wie gross ist die Wahrscheinlichkeit, dass alle Plätze belegt sind? Beantworte die Aufgabe mit beiden Verteilungen.

Binomialverteilung:
es soll genau der 73te Platz belegt sein, dann ist der Flieger voll -> P(X=73)
somit rechne ich (75 über 73) * 0.96^73 *(1-0.96)^2 und erhalte 0.2255.

So weit so gut, nun aber meine Frage zur Variante mit der Poisson-Verteilung

Poisson-Verteilung:

Gemäss den Lösung wird hier mit P(X=2) argumentiert, also quasi die Wahrscheinlichkeit dass zwei Personen nicht erscheinen?
Dementsprechend wird auch der Erwartungswert mit p*n also 0.04*75 gerechnet, welcher 3 ergibt...
Meine Frage dazu ist aber nun, weshalb hier nicht mit P(X=73) gerechnet werden kann? Kann ich nicht ebenfalls den Erwartungswert bilden mit: 0.96*75 = 72 Menschen die erscheinen und somit e^-72(72^73/73!) rechnen? In diesem Fall würde ich 0.046 erhalten... Was ist den der Unterschied zur Binomialverteilung?

Ich danke euch für eine Rückmeldung

Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Bernoulli, Binomialverteilung, Erwartungswert
Wie berechnet man diese Wahrscheinlichkeiten?

Ein im Jahr 07 zugelassener Pkw wird zufällig ausgewählt. () Geben Sie die Wahrscheinlichkeit der folgenden Ereignisse an: A: Der Pkw ist ein Elektroauto. B: Der Pkw wurde privat zugelassen und ist kein Elektroauto. (3) Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Pkw ein Elektroauto ist, wenn er gewerblich zugelassen wurde. (6 + 3 + 3 Punkte) Im Folgenden werden die Verkaufszahlen eines großen Autohauses betrachtet, das sich auf den Verkauf von Elektrofahrzeugen spezialisiert hat. Im Vergleich zum Bundesdurchschnitt verkauft dieses Autohaus überdurchschnittlich viele Elektroautos. So ergab die Analyse der Vorjahresverkaufszahlen, dass 7,5 % der verkauften Autos Elektroautos waren. Diese empirisch ermittelte relative Häufigkeit soll im Folgenden als Wahrscheinlichkeit dafür angesehen werden, dass ein verkauftes Auto ein Elektroauto ist. Die Anzahl verkaufter Elektroautos wird im Folgenden als binomialverteilt angenommen. b) () Das Autohaus stellt eine Prognose für die nächsten 000 Autoverkäufe auf. Bestimmen Sie die Wahrscheinlichkeit folgender Ereignisse: E : Es werden genau 80 Elektroautos verkauft. E : Es werden mindestens 70, aber höchstens 80 Elektroautos verkauft. E 3 : Die Anzahl der verkauften Elektroautos entspricht genau dem Erwartungswert. () Ermitteln Sie, wie viele Autos mindestens verkauft werden müssen, damit darunter mit einer Wahrscheinlichkeit von mindestens 90 % mindestens ein Elektroauto ist. 

rechnen, Mathematiker, Prozent, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Rechenweg

Meistgelesene Fragen zum Thema Bernoulli