Wahrscheinlichkeit beim Ziehen mit Zurücklegen - zwei mögliche Ansätze (Urnenmodell)?

Die gegebene Aufgabe ist: Eine Urne ist mit q schwarzen und r roten Kugeln befüllt. Es wird mit Zurücklegen und ohne Berücksichtigung der Reihenfolge gezogen.

Wie hoch ist die Wahrscheinlichkeit, beim Ziehen von l+m Kugeln genau l schwarze und m rote Kugeln zu ziehen?

Mein 1. Ansatz:

Einführen einer Zufallsgröße X, die die schwarzen gezogenen Kugeln zählt und binomialverteilt ist mit n = q+r und p = l/(q+r). Die gesuchte Wahrscheinlichkeit ist nun P(X=l). Ist dieser Ansatz so korrekt?

Mein 2. Ansatz:

Prinzipiell kann man ja auch damit arbeiten, dass bei Laplace Experimenten die Wahrscheinlichkeit berechnet werden kann, indem man die Anzahl an günstigen Ergebnissen durch die Anzahl an insgesamt möglichen Ergebnissen teilt.

Es gibt insgesamt (q+r)^(l+m) / (l+m)! Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge).

Es gibt (q)^(l) / l! Möglichkeiten, aus q Kugeln genau l Kugeln auszuwählen. Und es gibt (r)^(m) / m! Möglichkeiten, aus r Kugeln genau m Kugeln auszuwählen. Folglich gibt es ((q)^(l) / l!) * ((r)^(m) / m!) Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge. Die Terme sind analog zum Fall ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge aufgestellt).

D.h. die gesuchte Wahrscheinlichkeit lässt sich auch als

(Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen)/(Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen)

= ( (q+r)^(l+m) / (l+m)!) /
((q)^(l) / l!) * ((r)^(m) / m!) ) ausdrücken, oder?

Ist das so korrekt, oder sind mir irgendwo Fehler unterlaufen? Sind beide Ansätze zulässig?

Schule, Mathematik, rechnen, Gleichungen, Gymnasium, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Erwartungswert, Kombinatorik, Rechenweg
Baumdiagramm?

Hallo, kann mir jemand erklären, wie das Baumdiagramm zur folgenden Aufgabe aussehen soll? Ich sitze schon seit Ewigkeiten an der Aufgabe und komme nicht darauf.

Ich habe mir zunächst überlegt, dass E (Für einen Kandidaten entscheiden) * J (Jungwähler bzw. Wahlberechtigt) = 44% ergeben muss. Daher muss als Gegenwahrscheinlichkeit E_ (Gegenteil von E) * J_ (Gegenteil von J) = 56% ergeben.

Hinzu kommt, dass wir die Angabe 12% haben. Ich habe das so verstanden, dass jeder Siebte der Befragten, die nicht entschieden haben, Jungwähler sind und der Anteil dessen diese 12% sind. Im Baumdiagramm könnte man dann ganz einfach die Gegenwahrscheinlichkeit 88% eintragen für E_*J_. Wir wissen ja schon, dass die Gegenwahrscheinlichkeit von den 44% zuvor 56% sind. Also könnten wir doch einfach hier 0,56/0,88 berechnen, sodass wir für den 1. Pfad für E_ ca. 64% bekommen. Für E ergäbe sich dann 36%. Jetzt kommt das Problem... Wir wissen ja dass wir dann noch diese 44% haben und entlang des Pfades können wir diese 36% mit irgendwas multiplizieren, sodass wir eben diese 44% bekommen. Und da bekomme ich, wenn ich 0,44/0,36 rechne, 1,22 raus. Das kann natürlich unmöglich sein. Deshalb bitte ich euch um Rat.

Bild zu Frage
rechnen, Zahlen, Funktion, Formel, Geometrie, Gleichungen, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Erwartungswert, Rechenweg, Analysis
Stochastik Normalverteilung Aufgabe ist verwirrend gestellt?

Hallo, die Aufgabe lautet:

Das Gewicht von Eiern freilaufender Hühner auf eine, Bauernhof ist normalverteilt mit Erwartungswert E(x)= 55g und Standardabweichung Sigma=5g. Das Gewicht der Eier wird auf volle Gramm-Zahlen gerundet.
Bestimmen Sie die Wahrscheinlichkeit, dass ein beliebig aus diesen Eiern ausgewähltes Ei

(1) mindestens 45g, höchstens 53g;

(2) mindestens 45 g;

(3)höchstens 50g;

(4)genau 60g wiegt.

als Hinweis steht da noch: „Beachten Sie: Das Ergebnis in Teilaudgabe 1 bedeutet, dass das Gewicht mindestens 44,5 g aber weniger als 53,5g beträgt.“

ich würde jetzt denken, dass man da ja keine Stetigkeitskorrektur mit +- 0,5 braucht, da man das ja nur benutzen muss, wenn in der Aufgabe steht, dass es binomialverteilt ist, d.h. man braucht die Stetigkeitskorrektur nur wenn man durch die Normalverteilung die Binomialverteilung annähern will. Also muss man diese Werte einfach in den Taschenrechner ohne Stetigkeitskorrektur eingeben, weshalb dieser Hinweis eigentlich keinen Sinn ergibt.

was ist nun richtig?

Studium, Schule, Mathematik, rechnen, Funktion, Abitur, Ableitung, Formel, Gleichungen, Gymnasium, Mathematiker, Oberstufe, Schulabschluss, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Abiturprüfung, Bernoulli, Binomialverteilung, Erwartungswert, Funktionsgleichung, Normalverteilung, Rechenweg, Wahrscheinlichkeitsverteilung, Analysis
Binomialverteilung / Poisson-Verteilung?

Hallo Zusammen,

Ich habe eine Frage zu einer spannenden Statistik Aufgabe, welche mit der Binomialverteilung und mit der Poisson-Verteilung zu lösen ist:

Eine Fluggesellschaft rechnet mit einer Wahrscheinlichkeit von 4%, dass ein Fluggast mit einem gekauften Ticket nicht erscheint.
Deshalb wird der Flug mit 75 von 73 verfügbaren Plätzen überbucht.

Wie gross ist die Wahrscheinlichkeit, dass alle Plätze belegt sind? Beantworte die Aufgabe mit beiden Verteilungen.

Binomialverteilung:
es soll genau der 73te Platz belegt sein, dann ist der Flieger voll -> P(X=73)
somit rechne ich (75 über 73) * 0.96^73 *(1-0.96)^2 und erhalte 0.2255.

So weit so gut, nun aber meine Frage zur Variante mit der Poisson-Verteilung

Poisson-Verteilung:

Gemäss den Lösung wird hier mit P(X=2) argumentiert, also quasi die Wahrscheinlichkeit dass zwei Personen nicht erscheinen?
Dementsprechend wird auch der Erwartungswert mit p*n also 0.04*75 gerechnet, welcher 3 ergibt...
Meine Frage dazu ist aber nun, weshalb hier nicht mit P(X=73) gerechnet werden kann? Kann ich nicht ebenfalls den Erwartungswert bilden mit: 0.96*75 = 72 Menschen die erscheinen und somit e^-72(72^73/73!) rechnen? In diesem Fall würde ich 0.046 erhalten... Was ist den der Unterschied zur Binomialverteilung?

Ich danke euch für eine Rückmeldung

Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Bernoulli, Binomialverteilung, Erwartungswert

Meistgelesene Fragen zum Thema Erwartungswert