Erwartungswert – die neusten Beiträge

Den Erwartungswert einer Zufallsgröße berechnen?

Hallo,

Ich sitze gerade an meinen Mathehausuafgaben und komme leider nicht weiter. Die Aufgabe lautet:

Für einen Einsatz von 8€ darf man an folgendem Spiel teilnehmen.

Eine Urne enthält 6 rote Kugeln und 4 schwarze Kugeln. Es werden drei Kugeln mit einem Griff gezogen. Sind unter den gezogenen Kugeln mindestens zwei rote Kugeln, so erhält man 10€ ausgezahlt. Es soll geprüft werden, ob das Spiel fair ist.

A) X sei die Anzahl der gezogenen roten Kugeln. Stellen sie die Wahrscheinlichkeitsverteilung der Zufallsgröße X auf.

B) Y sei der Gewinn pro Spiel (Auszahlung - Einsatz). Stellen Sie die Wahrscheinlichkeitsverteilung von Y auf und berechnen Sie den Erwartungswert von Y.

C) Wie muss der Einsatz verändert werden, damit ein Faires Spiel entsteht?

Bei A) habe ich bereits erhebliche Probleme. Ich weiß, dass ich die Wahrscheinlichkeiten der Möglichkeiten miteinander multiplizieren muss. Das Problem hier ist eher, Das meine Lösungen anders sind als die die ich gefunden habe.

Zum Beispiel:

P(ssr)= 4/10 * 3/9 * 6/8 = 1/10. Im Internet steht allerdings, dass die Lösung 3/10 ist. Hier sind meine restlichen Lösungen:

P(sss) = 4/10 * 3/9* 2/8 = 1/30

P(srr) = 4/10 * 6/8 * 5/8 = 1/6 (im internet steht 1/2)

P(rrr) = 6/10 * 5/9 * 4/8 = 1/6

Bei B) habe ich so gerechnet:

P(mind. 2 rote) = 1/6 * 1/6 = 1/36

P(höchstens 1 rote) = 1/30 * 1/10 = 1/300

E(y) = (-8) * 1/300 + 2 * 1/36 = 13/450

= 0.028889

Und bei C) habe ich nur den Ansatz E(Y) = 0 (Da der Gewinn neutral sein muss um ein faires Spiel zu erlangen)

Kann mir bitte jemand sagen was ich falsch gemacht habe und wie ich korrekt weiter rechne? Dankeschön!

Schule, Mathematik, Stochastik, Wahrscheinlichkeitstheorie, Erwartungswert, Wahrscheinlichkeitsverteilung

Varianz des Stichprobenmittels beim Ziehen ohne Zurücklegen?

Hallo ihr lieben,

ich habe gerad ein bisschen Probleme bei folgender Aufgabe und hoffe ihr könnt mir weiterhelfen. Die Aufgabe im Wortlaut:

Meine bisherigen Ansätze:

a) i) Erwartungswert E (x) = 1/2 * 10 + 1/6 * 5 + 1/3 * 20 = 12,5

ii) Varianz: (10 - 12,5)² 1/2 + (5 - 12,5)² * 1/6 + (20 - 12,5)² * 1/3 = 31,25

iii) Wurzel von 31,26 = 5,5902

b)

α) Es weden alle Individuen gezogen. Der Ausgang ist deterministisch und damit  (richtig oder Quatsch?)

β)Für die Kovarianz habe ich folgende Formel im Internet gefunden



 ist die Varianz, also 31,25. Aber was ist der hintere Term, also 

γ)Hier hätte ich gesagt 1/30 * 31,25 = 1,0412. Hier bin ich mir nicht sicher, ob es nicht doch zu einfach ist.

c) Auch hier wieder eine Formel durch Internetrecherche

 Für n hätt' ich jetzt 30 eingesetzt, da dies die Stichprobengröße ist. Aber was ist p, wenn die Abweichung 2 sein soll? 200 %?

Im Skript ist die Ungleichung von Chebyshev wie folgt definiert:

"Y sei eine reellwertige Zufallsvariable mit endlichem Erwartungswert μ. Dann gilt für alle ε >0: P(|Y−μ|≥ε) ≤ \frac{1}{ε^2}Var[Y] ".

Den Erwartungswert und die Varianz habe ich aus Aufgabenteil a). Aber was wären Mü und Epsilon?

Danke und liebe Grüße

Bild zum Beitrag
Computer, Schule, Mathematik, rechnen, erwartungen, Informatik, Statistik, Stochastik, Wahrscheinlichkeit, Stichprobe, Erwartungswert, population, Standardabweichung, Varianz

Meistgelesene Beiträge zum Thema Erwartungswert