Kennt sich hier jemand mit Algebra-Mathematik aus?

Hallo,

da unsere Lehrerin krank ist, haben wir Arbeitsblätter bekommen, die wir bearbeiten sollen.... Natürlich ohne entsprechende Erklärung. Vielleicht kann mir jemand hier erklären, was gemeint ist und wie ich das berechne? Vielleicht am besten an einer Beispielrechnung? Es "auszurechnen" stellt kein Problem dar. Eher, dass es in einer "bestimmten Form" sein soll...und was ist ein "rationaler Nenner"? Die : stellen Bruchstriche da

Vielen Dank im Voraus

Das Thema ist Algebra.

Aufgabe 1: Übertrage in die Form k√2

a) √18 b) √50 c)√8 d)√98 e)√200 f) √162

Aufgabe 6: Übertrage in die Form a+b√3

a) √3 (2 + √3) b) 4 - √3 - 2 (1- √3) c) (2√7 +3)² d) (3√2-1)(2√2 + 5) e) (√5 - √2) ( √5 + 2√2) f) (3-√8) (4 + √2)

Aufgabe 8: Drücken Sie jede der folgenden Aussagen so einfach wie möglich mit einem rationalen Nenner aus:

a) 1 : √5 e) 3√2 : √3 f) √5 : √15 g) 1 : 3√7

i) 1 :√80 l) 3√175 : 2√27

11 b) Ändere 2 : 2-√3 in die Form a+b√3

13) Lösen Sie die Gleichung 3x=√5 (x + 2) , Geben Sie Ihre Antwort in der Form a + b √5 an, wobei a und b rational sind

Mathematik, rechnen, Funktion, 9. Klasse, Ableitung, Algebra, analytische Geometrie, Formel, Geometrie, Gleichungen, Gymnasium, lineare Algebra, Logik, Mathematik Oberstufe, Mathematiker, Mathematikstudium, Matheunterricht, quadratische Funktion, Vektoren, Vektorrechnung, Wurzel, Mengenlehre, Beweis, Funktionsgleichung, Graphen, Mathearbeit, Mathelehrer, Parabel, Analysis
Vollständige Induktion 2?

Vollständige Induktion,

Hallo,

Ich habe mich wieder mit dem Prinzip der vollständigen Induktion befasst und habe folgenden Denkfehler: Am Anfang gibt es ja eine Behauptung, die man durch das Einsetzen einer Zahl beweist. Das bedeutet ja, dass man ab diesem Moment sagt, dass die Gleichung XY für eine bestimmte Variable (natürliche Zahl) gilt. Sagen wir Mal, die Voraussetzung ist, dass es beispielsweise für n 1 gilt. Dann setzt man für n, (n + 1) ein und beweist hiermit unter der Voraussetzung, dass die Gleichung für n=1 erfüllbar war, dass die Gleichung auch für den Nachfolger, also zwei erfüllbar ist.

Ab hier habe ich eine Frage: Üblicherweise hört man ja hier auf (die Annahme, dass es für alle natürlichen Zahlen gilt, ist bewiesen). Liegt es hierbei daran, dass wenn man zeigt (durch Umformungen etc), dass man n+1 auf der „anderen“ Seite rekonstruieren kann, dass auch n+2, also auch n+3 n+4 ..-…. rekonstruierbar ist? Oder wie versteht man das? Würde das also auch bedeuten, dass wenn ich (n-1) beweise, dass auch (n-2..) gilt?

Zudem: Verstehe ich das richtig, dass die vollständige Induktion also einer Art Beweissatz ist, der die „Gültigkeit“ einer Lösungsmenge darlegt?

Gibt es eine Möglichkeit nur mit der vollständigen Induktion zu beweisen, für welche Zahlenmengen eine Gleichung gilt (also ohne davor eine Voraussetzung zu haben, dass beispielsweise Gleichung XY für alle natürlichen Zahlen gilt)?

rechnen, Funktion, Formel, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Stochastik, Mengenlehre, Beweis, diskrete Mathematik, Grenzwert, Zahlenfolgen, Analysis 1, Analysis
Warum beweist Cantors Diagonalargument die nicht vorhandene Bijektion?

Georg Cantor hat bewiesen, dass die Menge der reellen Zahlen im Intervall [0;1] nicht bijektiv zur Menge aller natürlichen Zahlen ist. Dies tat er durch sein Diagonalargument. (Ich weiß grad nicht mehr, ob das erste oder zweite.)

Aaaaber ich verstehe nicht, warum keine Bijektion herrscht, nur weil die Liste nie vollständig ist. Denn lediglich das zeigt Cantors Argument.

Eine Liste von unendlichen Zahlen, ist ja sowieso niemals vollständig.

Nur weil bewiesen werden kann, dass die Liste nicht vollständig ist, heißt das nicht, dass es keine eineindeutige Zuordnung der Elemente geben kann. Oder etwa doch? Aber warum?!

Bei den geraden Zahlen geht das ja auch, obwohl man immer wieder eine neue Zahl erschaffen kann. (Die letzte +2)

Warum darf er überhaupt seine These auf unendlich lange Zahlen machen? Man kann doch nicht alles einfach in die Unendlichkeit übertragen. Sein Argument ergibt ja einigermaßen Sinn, aber doch nicht für unendlich lange Zahlen, die ja aber damit erschaffen werden!

Ich verstehe echt nicht den Zusammenhang zwischen einer immer unvollständigen Liste einer Menge und ihrer Bijektion und warum sein Argument für unendliche Längen überhaupt erlaubt ist.

rechnen, Zahlen, Funktion, Algebra, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Pi, Unendlichkeit, Mengenlehre, Beweis, Funktionsgleichung, Grenzwert, komplexe Zahlen, reelle Zahlen, Analysis
Wieso ist die Wurzel aus 2 irrational?

Ich habe gerade ein kleines mathematisches Problem und finde meinen Fehler einfach nicht. Deshalb wäre ich dankbar, wenn mir jemand sagen könnte, was an meinen Überlegungen falsch ist.

  1. Die rationalen Zahlen sind definiert als die Menge der Zahlen, die sich durch Brüche aus ganzen Zahlen darstellen lassen.
  2. Die Wurzel aus 2 - um ein Beispiel zu nennen - ist irrational. Aber ich kann die Wurzel aus 2 durchaus als Bruch darstellen. Beispielsweise mit dem Nenner 1.
  3. Diese Darstellung entspricht nicht der Definition von rationalen Zahlen, denn im Zähler befindet sich ein Komma, also keine ganze Zahl.
  4. Ich erweitere den Bruch nun mit 10. So verschiebt sich das Komma um eine Stelle.
  5. Diese Darstellung entspricht nicht der Definition von rationalen Zahlen, denn im Zähler befindet sich ein Komma, also keine ganze Zahl.
  6. Die Definition einer rationalen Zahl sagt aber nicht aus, dass die ganzen Zahlen in Nenner und Zähler endlich sein müssen. Ich kann den Bruch also doch einfach unendlich oft mit 10 erweitern.

Das entspricht doch dann letztendlich einem Bruch, der sowohl im Nenner, als auch im Zähler eine unendlich große ganze Zahl hat.

Wenn ich aber nun sage, seien a und b unendlich große ganze Zahlen, dann ist klar, dass a/b eine rationale Zahl ist.

Wie unterscheidet sich also nun meine Ausführungen von der Wurzel von 2 vom einfach Fall a/b?

Den einzigen Fehler, den ich erahnen könnte, ist der, dass ich selbst dann, wenn ich meinen Bruch unendlich oft erweitere, niemals eine ganze Zahl in den Nenner bekomme. Wenn ich den Bruch aber nun unendlich oft erweitere und anschließend einfach die Nachkommastellen weglassen würde, hätte ich doch einen Bruch aus ganzen Zahlen, der sich der Wurzel aus 2 unendlich genau annähert. Kann ich an der Stelle nicht behaupten, dass mein Bruch einfach gleich der Wurzel 2 ist, so wie man beispielsweise auch sagt, dass 0,99 Periode gleich 1 ist? Und müsste daraus dann nicht folgen, dass die Wurzel aus zwei eine rationale Zahl ist, da es eine rationale Zahl (meinen Bruch) gibt, die sich der Wurzel aus 2 unendlich genau annähert.

Zahlen, Unendlichkeit, Mengenlehre, Zahlenmengen
Wie stellt man die Aussage "Einige Säugetiere sind Menschen" anschaulich Venn-Diagramm dar? Handelt es sich um eine Schnittmenge?

Hallo, zusammen. Mir ist heute da ein kleines Problem unterlaufen, dass meinem Kopf etwas zu schaffen macht. Vielleicht verstehe ich auch nur etwas falsch. Es geht um folgendes:

Angenommen wir haben die Aussage: "Einige Säugetiere sind Menschen" vor uns. Es ist naheliegend, dass hiermit bezeichnet wird das nur ein Teil der Menge der Säugetiere eben Menschen sind, während ein anderer Teil der Säugetiere keine Menschen sind. Wie stelle ich diese Situation im Venn-Diagramm dar? Meine Intuition hatte folgenden Gedankengang:

Da ich weiß, dass "Alle Menschen sind Säugetiere" gilt, muss die Menge der Menschen vollständig innerhalb der Menge der Säugetiere enthalten sein. Trotzdem zeigt mir die Musterlösung, dass für "Einige Säugetiere sind Menschen" eine Schnittmenge gezeichnet wird.

Wie aber soll das funktionieren? Wenn es tatsächlich eine Schnittmenge wäre, dann würde ich ja behaupten, dass nur die Menschen innerhalb der Schnittmenge mit der Menge der Säugetiere eben Säugetiere sind, während die anderen Menschen keine Säugetiere sind. Demnach wäre also das Venn-Diagramm dafür falsch.

Verstehe ich hier etwas falsch? Oder ist die Musterlösung falsch?

Mathematik, Hilfestellung, schliessen, denken, Immanuel Kant, Kant, Logik, Menge, problemchen, Schluß, schwer, Urteil, Vernunft, verstand, Mengenlehre, Aussagenlogik, Schlussfolgerung, teilmenge, Schnittmenge, Prädikatenlogik

Meistgelesene Beiträge zum Thema Mengenlehre