Integralrechnung – die neusten Beiträge

Brauche Hilfe bei f^2(x)=16b^2-(b^4/4)?

Guten Abend allerseits!

Ich habe in meinem Mathe-LK eine Aufgabe bekommen, bei der ich gerade ein paar Schwierigkeiten habe... Ich habe mal ein Bild von der Aufgabenstellung hinzugefügt.

Jedenfalls haben wir schon die Hauptbedingung für die Querschnittsfläche aufgestellt, welche wie folgt lautet: A (b, h) = b * h.
Die Nebenbedingung wurde dann durch den Satz des Pythagoras festgestellt: (b/2)² + h² = 4².

Meine erste Frage liegt dann auch schon bei der Nebenbedingung, da mir nicht klar ist, wie man denn auf die 4 kommt. Ich nehme an die b/2 kommen von der Grundseite b, welche man halbiert hat, das h kommt einfach von der Höhe h und alles steht im Quadrat, da wir den Satz des Pythagoras angewendet haben. Aber wieso wir da die 4 aufgeschrieben leuchtet mir nicht wirklich auf.

Wenn man jetzt die Nebenbedingung umformt und die Wurzel zieht, erhält man dann: h = +(-)√(4² - (b² / 4)).
Damit hätten wir schon das h aus der Hauptbedingung und können dieses einsetzen: A (b) = b * √(16 - (b² / 4)).

Anschließend nehmen wir noch das b unter die Wurzel: A (b) = √(16 - (b² / 4) * b²).
Und dann lösen wir die Klammern noch auf: A (b) = √(16 * b² - (b⁴/4).

Zum Schluss haben wir im Unterricht noch die Wurzel aufgelöst mit | ( )² und das sieht dann so aus: A² (b) = 16 b² - (b⁴/4).

Mein größtes Problem liegt jetzt dabei, dass ich nicht weiß was das A²(b) heißt. Ist das einfach die Fläche von diesem Rechteck zum Quadrat oder muss ich mir das wie eine Funktion vorstellen.
Zusätzlich weiß ich nicht, wie ich weiter vorgehen soll, um die Querschnittsfläche zu berechnen.

Mein Lehrer fragte in die Runde, wer sich zutraut diese Aufgabe fortzuführen und ich hatte in der Schule schon eine Idee und wusste auch schon wie ich es machen soll. Leider habe ich diesen Gedanken vergessen und es fällt mir jetzt zuhause irgendwie schwer auf eine Lösung zu kommen ;)

Ich würde mich riesig über jede Hilfe freuen, da ich das eigentlich in der nächsten Stunde vorstellen wollte...
Falls oben etwas falsch sein sollte gebt bitte Bescheid. Danke schonmal im voraus.

Bild zum Beitrag
rechnen, Funktion, Gleichungen, Integralrechnung, Satz des Pythagoras, Extremwertaufgaben

Ist meine Matheaufgabe richtig gelöst worden?

Zu der Aufgabe wäre das meine Lösung:

a) Um die Extrema und Wendepunkte der Funktion f(x) = e^x - x zu bestimmen, betrachten wir zuerst die Ableitung f'(x). Setzen wir f'(x) = 0, um mögliche Extremstellen zu finden:

f'(x) = e^x - 1 = 0

Daraus folgt:

e^x = 1

Da die Exponentialfunktion e^x niemals negativ wird, kann sie nur an einer Stelle den Wert 1 erreichen, und das ist bei x = 0 der Fall. Somit haben wir eine Extremstelle bei x = 0.

Um festzustellen, ob es sich um ein Minimum oder Maximum handelt, betrachten wir die zweite Ableitung f''(x):

f''(x) = e^x

Da f''(0) = e^0 = 1 positiv ist, handelt es sich bei x = 0 um ein Minimum.

Da wir kein weiteres Extremum gefunden haben und die Funktion f(x) nach oben offen ist, besitzt sie keine weiteren Extrema oder Wendepunkte.

b) Da f(0) = 1 und es keine weiteren Extremstellen gibt, gibt es keine kleineren Werte als 1 auf dem Funktionsgraphen. Daher hat die Funktion f(x) keine Nullstellen.

c) Um zu zeigen, dass der Zubringer tangential in die Autobahn mündet, müssen wir den Anstieg der Funktion f(x) an der Stelle x = 1 mit dem Anstieg der Geraden des Zubringers vergleichen.

Der Zubringer wird durch eine Geradengleichung y = ax + b beschrieben. Da der Punkt (0,0) auf der Geraden liegt, ist b = 0. Der Punkt (1, f(1)) = (1, e^1 - 1) liegt ebenfalls auf der Geraden, daher setzen wir ihn ein:

f(1) = e^1 - 1 = e - 1

Daraus ergibt sich:

f(1) = a*1 + b = e - 1

Da b = 0, erhalten wir a = e - 1.

Somit hat die Gerade des Zubringers die Gleichung y = (e - 1)x.

Der Anstieg der Funktion f(x) an der Stelle x = 1 ist gegeben durch f'(1) = e^1 - 1 = e - 1.

Der Anstieg der Geraden des Zubringers ist ebenfalls e - 1.

Da beide Anstiege gleich sind, mündet der Zubringer tangential in die Autobahn.

d) Um die Fläche des Grundstücks zwischen Straße, Zubringer und Bahnlinie zu berechnen, müssen wir den Bereich zwischen den entsprechenden Kurven auf dem Graphen bestimmen.

Die Straße wird durch die x-Achse (y = 0) dargestellt.

Die Gerade des Zubringers ist y = (e - 1)x.

Die Bahnlinie wird durch die Gerade y = x dargestellt.

Wir müssen nun die Schnittpunkte dieser Kurven finden:

0 = (e - 1)x

x = 0 (Schnittpunkt bei B)

und

x = 1 (Schnittpunkt mit der Autobahn)

Der Bereich zwischen den Kurven erstreckt sich also von x = 0 bis x = 1.

Um die Fläche dieses Bereichs zu berechnen, verwenden wir das Integral. Da die Kurvenfunktionen y = (e - 1)x und y = x den Bereich begrenzen, integrieren wir die Differenz der beiden Funktionen von x = 0 bis x = 1:

Fläche = ∫[0,1] [(e - 1)x - x] dx

Die Berechnung des Integrals ergibt:

Fläche = [((e - 1)x^2)/2 - (x^2)/2] |[0,1]

    = ((e - 1)/2 - 1/2) - (0/2 - 0/2)

    = (e - 2)/2

Da 1 Hektar 10,000 m² entspricht, können wir die Fläche in Hektar umrechnen:

Fläche = (e - 2)/2 * 10,000 m²

Somit hat das Grundstück zwischen Straße, Zubringer und Bahnlinie eine Fläche von (e - 2)/2 * 10,000 m² bzw. (e - 2)/2 Hektar.

Bild zum Beitrag
rechnen, Funktion, e-Funktion, Ableitung, Exponentialfunktion, Formel, ganzrationale Funktionen, Gleichungen, höhere Mathematik, Integral, Integralrechnung, Mathematiker, Nullstellen, Stammfunktion, Funktionsgleichung, Graphen, Analysis

Meistgelesene Beiträge zum Thema Integralrechnung