Vollständige Induktion 2?

Vollständige Induktion,

Hallo,

Ich habe mich wieder mit dem Prinzip der vollständigen Induktion befasst und habe folgenden Denkfehler: Am Anfang gibt es ja eine Behauptung, die man durch das Einsetzen einer Zahl beweist. Das bedeutet ja, dass man ab diesem Moment sagt, dass die Gleichung XY für eine bestimmte Variable (natürliche Zahl) gilt. Sagen wir Mal, die Voraussetzung ist, dass es beispielsweise für n 1 gilt. Dann setzt man für n, (n + 1) ein und beweist hiermit unter der Voraussetzung, dass die Gleichung für n=1 erfüllbar war, dass die Gleichung auch für den Nachfolger, also zwei erfüllbar ist.

Ab hier habe ich eine Frage: Üblicherweise hört man ja hier auf (die Annahme, dass es für alle natürlichen Zahlen gilt, ist bewiesen). Liegt es hierbei daran, dass wenn man zeigt (durch Umformungen etc), dass man n+1 auf der „anderen“ Seite rekonstruieren kann, dass auch n+2, also auch n+3 n+4 ..-…. rekonstruierbar ist? Oder wie versteht man das? Würde das also auch bedeuten, dass wenn ich (n-1) beweise, dass auch (n-2..) gilt?

Zudem: Verstehe ich das richtig, dass die vollständige Induktion also einer Art Beweissatz ist, der die „Gültigkeit“ einer Lösungsmenge darlegt?

Gibt es eine Möglichkeit nur mit der vollständigen Induktion zu beweisen, für welche Zahlenmengen eine Gleichung gilt (also ohne davor eine Voraussetzung zu haben, dass beispielsweise Gleichung XY für alle natürlichen Zahlen gilt)?

rechnen, Funktion, Formel, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Stochastik, Mengenlehre, Beweis, diskrete Mathematik, Grenzwert, Zahlenfolgen, Analysis 1, Analysis
Warum beweist Cantors Diagonalargument die nicht vorhandene Bijektion?

Georg Cantor hat bewiesen, dass die Menge der reellen Zahlen im Intervall [0;1] nicht bijektiv zur Menge aller natürlichen Zahlen ist. Dies tat er durch sein Diagonalargument. (Ich weiß grad nicht mehr, ob das erste oder zweite.)

Aaaaber ich verstehe nicht, warum keine Bijektion herrscht, nur weil die Liste nie vollständig ist. Denn lediglich das zeigt Cantors Argument.

Eine Liste von unendlichen Zahlen, ist ja sowieso niemals vollständig.

Nur weil bewiesen werden kann, dass die Liste nicht vollständig ist, heißt das nicht, dass es keine eineindeutige Zuordnung der Elemente geben kann. Oder etwa doch? Aber warum?!

Bei den geraden Zahlen geht das ja auch, obwohl man immer wieder eine neue Zahl erschaffen kann. (Die letzte +2)

Warum darf er überhaupt seine These auf unendlich lange Zahlen machen? Man kann doch nicht alles einfach in die Unendlichkeit übertragen. Sein Argument ergibt ja einigermaßen Sinn, aber doch nicht für unendlich lange Zahlen, die ja aber damit erschaffen werden!

Ich verstehe echt nicht den Zusammenhang zwischen einer immer unvollständigen Liste einer Menge und ihrer Bijektion und warum sein Argument für unendliche Längen überhaupt erlaubt ist.

rechnen, Zahlen, Funktion, Algebra, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Pi, Unendlichkeit, Mengenlehre, Beweis, Funktionsgleichung, Grenzwert, komplexe Zahlen, reelle Zahlen, Analysis

Meistgelesene Beiträge zum Thema Mathematiker