Welche Formel für Seite im rechtwinkligen Dreieck?
Ich habe gerade das totale Blackout mit den Formeln... was ist das im blauen Kasten für eine Formel und warum funktioniert das so? Ich hätte jetzt versucht, a mit den Winkeln oder mit Pythagoras herauszufinden...
3 Antworten
Verstehe. Wenn man jetzt wüsste, wie groß c wäre (9 cm + p), könnte man vermutlich auch mit dem Satz des Pythagoras rechnen.
a² = c² - b²
Dann müsste p = 16 cm sein. Das sieht in der Skizze aber anders aus??
16 cm + 9 cm = 25 cm = c
a² = 25² - 15²
a² = 625 - 225 = 400
a = 20 cm
Die Skizze kann ja auch nicht stimmen. Vergleiche 9 cm mit 12 cm!!!
Wirklich klar und schnell geht es so ( ohne Py , Höhen - oder Kathetensätze )
Deine Formel umschreiben nach Teilen durch b
a/b = hc/q
.
Den Fußpunkt von hc nenne ich D
Dann sind die Dreiecke
ABC und ADC ähnlich , weil
- beide rechten Winkel
- bei Winkel CAB (alpha) gemeinsam
damit auch den dritten.
daher ist das Verhältnis von
kurze Kathete / langer Kath
in beiden DrEcken dasselbe
a/b = hc/q
Das große und die kleinen Dreiecke sind ähnlich.
Deshalb gilt:
Wenn du das jetzt nach a auflöst, hast du die gezeigte Formel! 😊
Ergänzung:
Mir ist gerade aufgefallen, dass da ja Zahlen stehen und man vermutlich a herausfinden soll.
Eine andere Möglichkeit, die mir spontan einfällt, ist folgende:
Laut Höhensatz gilt: h²=pq
h und q sind gegeben, also kann man p einfach ermitteln.
Jetzt hast du mit p+q die Seite c und kann mit freundlicher Unterstützung des Herrn Pythagoras die Seite a ermitteln.
Skizzen sind oft nicht maßstabsgetreu! 😉