Baumdiagramm – die neusten Beiträge

Wahrscheinlichkeit beim Ziehen mit Zurücklegen - zwei mögliche Ansätze (Urnenmodell)?

Die gegebene Aufgabe ist: Eine Urne ist mit q schwarzen und r roten Kugeln befüllt. Es wird mit Zurücklegen und ohne Berücksichtigung der Reihenfolge gezogen.

Wie hoch ist die Wahrscheinlichkeit, beim Ziehen von l+m Kugeln genau l schwarze und m rote Kugeln zu ziehen?

Mein 1. Ansatz:

Einführen einer Zufallsgröße X, die die schwarzen gezogenen Kugeln zählt und binomialverteilt ist mit n = q+r und p = l/(q+r). Die gesuchte Wahrscheinlichkeit ist nun P(X=l). Ist dieser Ansatz so korrekt?

Mein 2. Ansatz:

Prinzipiell kann man ja auch damit arbeiten, dass bei Laplace Experimenten die Wahrscheinlichkeit berechnet werden kann, indem man die Anzahl an günstigen Ergebnissen durch die Anzahl an insgesamt möglichen Ergebnissen teilt.

Es gibt insgesamt (q+r)^(l+m) / (l+m)! Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge).

Es gibt (q)^(l) / l! Möglichkeiten, aus q Kugeln genau l Kugeln auszuwählen. Und es gibt (r)^(m) / m! Möglichkeiten, aus r Kugeln genau m Kugeln auszuwählen. Folglich gibt es ((q)^(l) / l!) * ((r)^(m) / m!) Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge. Die Terme sind analog zum Fall ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge aufgestellt).

D.h. die gesuchte Wahrscheinlichkeit lässt sich auch als

(Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen)/(Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen)

= ( (q+r)^(l+m) / (l+m)!) /
((q)^(l) / l!) * ((r)^(m) / m!) ) ausdrücken, oder?

Ist das so korrekt, oder sind mir irgendwo Fehler unterlaufen? Sind beide Ansätze zulässig?

Schule, Mathematik, rechnen, Gleichungen, Gymnasium, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Erwartungswert, Kombinatorik, Rechenweg

Wie berechnet man diese Wahrscheinlichkeiten?

Ein im Jahr 07 zugelassener Pkw wird zufällig ausgewählt. () Geben Sie die Wahrscheinlichkeit der folgenden Ereignisse an: A: Der Pkw ist ein Elektroauto. B: Der Pkw wurde privat zugelassen und ist kein Elektroauto. (3) Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Pkw ein Elektroauto ist, wenn er gewerblich zugelassen wurde. (6 + 3 + 3 Punkte) Im Folgenden werden die Verkaufszahlen eines großen Autohauses betrachtet, das sich auf den Verkauf von Elektrofahrzeugen spezialisiert hat. Im Vergleich zum Bundesdurchschnitt verkauft dieses Autohaus überdurchschnittlich viele Elektroautos. So ergab die Analyse der Vorjahresverkaufszahlen, dass 7,5 % der verkauften Autos Elektroautos waren. Diese empirisch ermittelte relative Häufigkeit soll im Folgenden als Wahrscheinlichkeit dafür angesehen werden, dass ein verkauftes Auto ein Elektroauto ist. Die Anzahl verkaufter Elektroautos wird im Folgenden als binomialverteilt angenommen. b) () Das Autohaus stellt eine Prognose für die nächsten 000 Autoverkäufe auf. Bestimmen Sie die Wahrscheinlichkeit folgender Ereignisse: E : Es werden genau 80 Elektroautos verkauft. E : Es werden mindestens 70, aber höchstens 80 Elektroautos verkauft. E 3 : Die Anzahl der verkauften Elektroautos entspricht genau dem Erwartungswert. () Ermitteln Sie, wie viele Autos mindestens verkauft werden müssen, damit darunter mit einer Wahrscheinlichkeit von mindestens 90 % mindestens ein Elektroauto ist. 

rechnen, Mathematiker, Prozent, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Rechenweg

Meistgelesene Beiträge zum Thema Baumdiagramm