Analysis – die neusten Beiträge

Integralrechnung - Volksfest?

Bei einem Volksfest wird die Zustromrate durch die Funktion z(t)=−24t^2+190t+500 und die Abstromrate durch die Funktion a(t)=−7,8t^3+78t^2 bestimmt. (t: Zeit in Std. seit 12.00 Uhr; z,a: Zu-bzw. Abstromrate in Besucher/Std.)

Ich bin mir bei der d) unsicher. Den rest habe ich der Vollständigkeit halber trotzdem mit aufgeführt.

a) Stellen Sie die Graphen von f und g für 0 ≤t ≤10 dar (GTR erlaubt).
Lösung vorhanden

b) Zu welchen Zeitpunkten sind die Raten maximal, wann sind sie gleich ?
Lösung: maximale Rate: Ableitungsfunktionen jeweils 0 setzen ergibt bei z(t) einen HP(95/24 / 21025/24) sowie bei a(t) einen TP(0/0) und einen HP(20/3 / 1122,56)
gleiche Rate: a(t)=z(t) bzw. -a(t)=z(t) ergibt t=10 --> Raten sind um 22:00 Uhr gleich

c) Wie viele Besucher hatte das Volksfest insgesamt?
Lösung: Integral von 0 bis 10 von z(t) dt ergibt 6500 Besucher

d) Wie groß ist die maximale Zahl von Besuchern, die sich gleichzeitig auf dem Volksfest befanden?
Ansatz: Hierzu hatte ich schon einiges in anderen Foren gelesen, aber bin trotzdem noch sehr unsicher. a(t) und z(t) geben Änderungsraten an, also muss ich für die Gesamtanzahl der Besucher die Stammfunktion bilden von z(t)-a(t) und davon dann das Extremum berechnen, was wieder bedeutet, dass ich einfach die Nullstelle ausrechne mit z(t)-a(t)=0 oder?
Sprich: z(t)-a(t)=0 ergibt t1=-1,42416, t2=4,50108, t3=10, Die Ableitung von z(t)-a(t) ergibt für t1=527,989 (TP), t2=-254,143 (HP), t3=490 (TP), somit setze ich t2 in meine Stammfunktion (Integral von z(t)-a(t) dt) und komme auf 1875,12 Besucher.
Ist dieser Weg richtig oder hat jemand noch weitere Hilfestellungen für mich?

e) Zeigen Sie, dass insgesamt alle Besucher das Fest wieder verließen.
Lösung: Integral von 0 bis 10 von a(t) dt ergibt 6500 --> Alle Besucher (siehe Lösung c) mit 6500 Besuchern insgesamt) verließen das Fest wieder

Integral, Analysis

[Mathe] Anhand Schaubild den Grad einer Funktion bestimmen?

Einen wunderschönen guten Abend,

ich habe noch ein paar Fragen zu folgender Aufgabe. Im folgenden befindet sich ein Bild der Aufgabe und ein Bild des Lösungsvorschlags. Danach befinden sich meine Fragen (meine Fragen beziehen sich ausschließlich auf Aufgabenteil (1)).

Ich habe bei der Aufgabe alles bis auf den Aufgabenteil (1) perfekt verstanden. Hier sind meine Fragen zu dem Aufgabenteil (1):

  1. Wie kann man anhand eines gegebenen Schaubildes bestimmen, welchen Grad die Funktion haben muss? Geht das nur, indem man sich die Wendepunkte anschaut?
  2. Das habe ich denke ich jetzt verstanden (die Fragen waren nur mein Gedankengang): Warum kann man sagen, dass wenn es wie hier beim gegebenen Schaubild vier Wendepunkte gibt, dass es keine Funktion vierten Grades sein kann? Ich verstehe, dass wenn man eine Funktion vierten Grades zweimal ableitet es nur noch eine Funktion vom Grad zwei ist. Aber wieso kann man aus der zweiten Ableitung, welche in diesem Fall Grad 2 ist (bei einer ursprünglichen Funktion vierten Grades) daraus schließen, dass sie keine vier Wendepunkte haben kann? Weil die Ableitung also nur maximal zwei Ergebnisse haben kann. Also müsste in diesem Fall die Funktion mindestens von Grad 6 sein, um zum abgebildeten Schaubild zu passen.
  3. Gibt es noch eine andere Möglichkeit, um eine solche Aufgabe wie hier beantworten zu können, ohne auf die Wendepunkte einzugehen?
  4. Ist dieser Lösungsweg wie hier in dem Lösungsvorschlag der einfachste?
  5. Inwiefern haben die gemeinsamen Punkte einer Funktion mit der x-Achse einen Zusammenhang mit dem Grad einer Funktion?
  6. Inwiefern haben die maximal möglichen Punkte einer Funktion mit der x-Achse einen Zusammenhang mit dem Grad einer Funktion?

Ich freue mich über eure hilfreichen Antworten.

Bild zum Beitrag
rechnen, Funktion, Ableitung, Exponentialfunktion, Gleichungen, Integralrechnung, Kurvendiskussion, Mathematiker, Nullstellen, Funktionsgleichung, Graphen, Wendepunkt, Analysis

Meistgelesene Beiträge zum Thema Analysis