Panische Angst vor Experimentalphysik 1?

Good night, in the night. Das neue Semester läuft seit 5 Wochen und ich bin total aus dem Häuschen wie Nachbars Lumpi. Ich habe im Sommersemester angefangen zu studieren und habe dort die Vorlesung "Experimentalphysik 2" gehört und gut bestanden (Nicht zuletzt auch dank euer tollen Hilfe hier auf Gutefrage.net). Jetzt komm ich ins Wintersemester, wo "Experimentalphysik 1" ansteht - und ich bin total am Durchdrehen.

Ich bin in jeder Vorlesung und Übung. Ich bereite jede Vorlesung im Skript nach und recherchier auf einschlägigen Seiten. In der Vorlesung komm ich eigentlich auch sehr gut mit, da dort eigentlich hauptsächtlich die Theorie erklärt wird. Unser aktuelles Thema ist z.b. Reibung - da erzählt der Dozent dann bisschen was zur Haftreibung, Gleitreibung, partielle Vektorintegration usw. Alles easy peasy taco breezy.

Doch das große Problem sind die Übungsaufgaben. Ich sitz vor den Aufgaben und bin komplett fertig! Ich weiß gar nicht wo oben und unten und vorne und hinten ist. Um ein Beispiel zu geben, das ist unsere dieswöchige Aufgabe.

So, da fängst's schon an. Ist das jetzt ein schiefer Wurf? Ein schräger Wurf? Ein seitwärter Wurf? In der Vorlesung hatten wir die Formel gelernt y0 = 1&2 g t² + (-v0 * sin alpha t). So, jetzt steht in den Musterlösung y0 = 1/2 * s * t². Why??? 😂😂

So, nächstes Problem:

Hier wird jetzt der Wurf in vertiakle und horizontale Richtung gesplittet. . Jetzt wird auf einmal doch y0 = 1&2 g t² + (-v0 * sin alpha t ) für die vertiakel Richtung benutzt. Das wird dann nach t aufgelöst und in die horizontale Richtung "vo cos alpha" t" eingesetzt. Wie kommt man da drauf? Warum wird der vertikale Term mit dem Sinus nach t aufgelöst und dann in den horziontalen Term mit Cosinus eingesetzt??? Wieso nicht den Cosinustermin nach t auflösen und in den Sinus reinsetzen? Da könnt ich genau so gut sagen "den schrägwärtsten Term in den Term mit doppelten Salto und Tangens" einsetzen. Das ist alles so willkürlich und verwirrend.

Ein Problem ist auch, dass die Übung überhaupt nicht auf die Vorlesung zugeschnitten ist. Wir mussten in der letzten Übung von letzte Woche z.b. schon partielle Integration machen und in der Vorlesung wurde erst diese Woche der Begriff des Integrals eingeführt. Die Vorlesung ist eher so lustige Quasselrunde mit Experimenten und dann sitzt man vor der Übung wie ein Ochs vorm Berg.

Mir ist bewusst, dass man sich als Student viel selbst erarbeiten muss, aber ich sitz teilweise bis 5 Uhr morgens an den Blättern, hau mir die Nächte um die Ohren und check null. Heute hab ich z.b. von 13 Uhr bis Mitternacht an einem Blatt gehockt und dann guck ich mir ide Musterlösung an und denk mir "Da wär ich nie im Leben draufgekommen??".

In "Experimentalphysik 2" (Elektrodynamik) war alles klar definiert. Es gab Maschenregel, Knotenregel usw. Man wusste was zu tun war. Jetzt in "Experimentalphysik 1" (Mechanik) ist jede Aufgabe komplett anders. Wir hatten z.b. letzte Woche auch Aufgabe, wo ein Rettungshwimmer ins Meer springt ,also auch mit Geschwindigkeit und Winkeln - aber komplett andere Formeln.

Da musste man dann auf irgendwelche Doppelbrüche kommen

Ich weiß überhaupt nicht wie ich da ohne Lösung draufgekommen wär. Meine Kommilitonen schieben auch schon alle die Panik. Unser Dozent hat auch schon stolz präsentiert, dass die Durchfallquote bei ihm relativ hoch ist.

Eine Möglichkeit wäre noch Physik zu schieben. Die Aufgaben des Dozenten der nächstes Jahr an der Reihe sind sind relativ kürzer und er sagt auch selbst, dass die Klausuraufgaben bei ihm "sehr ähnlich" zu seinen Übungsaufgaben sein werden.

Wie habt ihr euch damals Mechanik auf die Kette geschafft? Irgendein hilfreiches Buch, Seite etc?
Wie kann ich die verschiedenen Fälle unterscheiden, damit ich schnell weiß welche Formel in welcher Situation anwendbar ist? Woher weiß ich z.b. "Ah, das ist jetzt schiefer Wurf - ach da muss ich jetzt vertikale Komponente nach t auflösen und in horizontale einsetzen!" Wie kann ich lernen die Aufgaben richtig zu lösen?

Mit verzweifelten Grüßen,
Jensek81

Bild zu Frage
Bewegung, Studium, Angst, Geschwindigkeit, Psychologie, Beschleunigung, Formel, Mechanik, Panik, Physiker, verzweifelt, Kinematik
Trägheit+weiteres?

Ich habe ein paar Fragen zu den oben genannten Themen. Obwohl ich diese Frage bereits gestellt habe, kam mir ein neuer Gedanke. Erstens, Trägheit: Ich bin mir sicher, dass Sie alle das Experiment mit einer Münze und einem Papierstreifen kennen (der Papierstreifen wird schnell entfernt). Im Internet habe ich für die Frage, warum der Coin auf einem zu hohen Kurs „stand“, folgende Erklärung gefunden. bleibt: Die Gravitationskraft hat nicht genug Zeit, um eine Bewegungsänderung einzuleiten, daher bleibt die Münze träge (und wenn sie bleibt, hatte sie genug Zeit). Ist das wirklich so? Dass eine gewisse Anziehung „erlebt“ wird Kraft übertragen? Im Autobeispiel werden Mensch und Auto als getrennte Körper betrachtet. Eine Person kann die Geschwindigkeit des Autos nur mit dem Sicherheitsgurt oder dem Sitz kontrollieren. Auch Reibungskräfte sind am Beispiel der Münze interessant. Erst wenn die Haftreibung überwunden wird und die Kräfte unausgeglichen sind, kommt es zu „Schlupfen“. (oder auch nicht) eine Münze aus einem Papierstreifen. Es bedeutet einfach Gleitreibung, deren Zweck darin besteht, die Bewegung so zu ändern, dass sich die Münze mit der gleichen Geschwindigkeit wie der Barren bewegt. Wenn die durch das Zeichnen auf Papier erzeugte Kraft nicht existiert, warum müssen Sie dann leichtere Massen „schneller“ manipulieren? mit Traktion oder mehr Beschleunigung, um sie abzubremsen. Gibt es dazu einen logischen Zusammenhang mit Reibung? Zwei Kräfte können durch eine Kraft, eine äquivalente Kraft, beschrieben werden. Diese beiden „Teilmächte“; (hinzugefügt) sind größer als die gesamte Austauschkraft. Wie? Hat es etwas mit Angriffspunkten zu tun? Noch eine Frage zur Federkonstante: Wovon hängt die Ausdehnung ab? Jeder Frühling ist anders, aber warum? (Jetzt nicht meins wegen Krsft)

Kraft, Beschleunigung, Mechanik, Newton, Physiker, Trägheit
Trägheit/Ersatzkraft?

Hallo,

Ich habe ein Paar Fragen zu den oben genannten Themen. Zwar habe ich schon eine Frage gestellt, jedoch ist mir ein neuer Gedanke eingefallen. Erstmal Trägheit: Sicherlich kennt ihr alle das Experiment mit der Münze und dem Papierstreifen (Papierstreifen wird schnell weggezogen). Im Internet fand ich folgende Erklärung für die Fragen, warum bei zu hoher Geschwindigkeit, die Münze "stehen" bleibt: Die Zugkraft hat nicht genug Zeit, um eine Bewegungsänderung einzuleiten, sodass die Münze träge bleibt (und wenn sie halt mitkommt, hatte es genug Zeit). Ist das Wirklich so? Dass eine gewisse Zugkraft "probiert" eine Kraft zu übertragen? Bei dem Auto-Beispiel wird ja auch der Mensch und das Auto als getrennte Körper betrachtet. Nur durch den Gurt oder durch den Sitz erhält dann der Mensch die jeweilige Geschwindigkeit des Autos. Bei dem Münzenbeispiel sind außerdem Reibkräfte interessant. Erst wenn die Haftreibung überwunden wird, nicht im Kräftegleichgewicht ist, dann "rutscht" (oder auch nicht) die Münze vom Papierstreifen. Dabei kommt es nur zur Gleitreibung, die einen Bewegungsänderung so erreichen möchte, sodass sich die Münze mit gleicher Geschwindigkeit wie des Streifens bewegt. Falls es diese Kraft, die durch das Ziehen des Papiers entwickelt wird, nicht gibt, warum muss man dann bei leichteren Massen "schneller" ziehen, bzw mit einer höheren Beschleunigung, damit diese träge bleiben. Gibt es dafür einen logischen Zusammenschluss durch die Reibung? Zwei Kräfte können durch 1 Kraft, die Ersatzkraft beschrieben werden. Diese zwei "Teilkräfte" (addiert) sind größer als die Ersatzkraft insgesamt. Wieso? Hat das was mit den Angriffspunkten zu tuhen? Noch eine Frage zur Federkonstante: wovon hängt die Verlängerung ab? Bei jeder Feder ist es ja unterschiedlich, wieso aber? (Meine jetzt nicht wegen der krsft)

Geschwindigkeit, Beschleunigung, Mechanik
Elastizitätsmodul von Messing (graph) darstellen?

Leute, ich bin ein bisschen verwirrt. Ich habe hier eine Aufgabe bekommen womit ich einen Graphen erstellen soll mit SciDavis, allerdings bin ich ein bisschen überfordert.

Es soll ja so ein Messing graph sein, also so ein hin her schwingen zwischen starken Anstieg des Graphen und starken Abfall. aber ich weiß halt nicht wie ich es berechnen soll.

____________________________

Das ist die Aufgabe:

Ein Messingstab mit einer Gesamtlänge L=(1,001+0,002)m, einer Masse m=(0,9505+0,0001)kg und mit einem Durchmesser von d=(1,210±0,006)cm und entsprechenden R als Radius. Auf der anderen Seite wird ein Gewichte M=(0,500+0,001)kg in unterschiedlichen Abständen L_i, zum Halterungspunkt angehängt und die Auslenkung s des Stabes gemessen Ziel der Messung ist es, das Elastizitätsmodul E des Materials zu bestimmen.

s = 4/(3pi) * (L_{i} ^ 3)/(E * R ^ 4) * g*M

Die Messunsicherheit für L, beträgt Delta L-±0,002m und für die Auslenkung Delta s=+0,1mm

Punkte:

L_i(m). | s(mm)

0,073. | 1,4

0,135. | 3,0

0,221. | 4,8

0,357. | 7,3

0,528. | 11,2

0,715. | 16,1

____________________________

Ich habe am Anfang Li und s erstmal als graph dargestellt, es war fast eine lineare Funktion, dann ist mir aber aufgefallen das die y Achse eigentlich nicht s sonder E (Elastizitätsmodul) sein soll.

Ich bin mir nicht sicher wie ich es berechnen soll, ich habe die Formel

s = 4/(3pi) * (L_{i} ^ 3)/(E * R ^ 4) * g*M

Benutzt und s und E verstaucht. Und alles eingesetzt. Ich bekam dann die punkte für E heraus aber ich weiß nicht ob es richtig ist, denn es sieht so ähnlich aus wie ein Exponentialfunktion. Bin ich auf dem richtigen Weg?

Und ich soll übrigens ja auch die Messunsicherheit messen, ich bin schon sowieso etwas verwirrt welche Formeln ich benutzen muss für die Messunsicherheit.

Kann mir wer helfen?

Bewegung, Mathematik, Geschwindigkeit, Wissenschaft, Beschleunigung, Exponentialfunktion, Formel, Mechanik, Messing, Messung, Physik, Unsicherheit, Graphen, Messungen
Physikaufgabe - ungleichförmige Kreisbewegung?

Im Rahmen meines Studiums bin ich bei den Übungsaufgaben auf dieses Problem gestoßen (deswegen im Vornherein: Bitte schreibt keine vollständigen Lösungen. Das würde den Rahmen sprengen und das Prinzip "Übung" verletzen)

Ich habe mir die Frage die letzten Tage länger durch den Kopf gehen lassen, finde aber keinen zielführenden Ansatz. Mir ist klar, dass es irgendwas damit zu tun haben muss, dass  Und mir ist bewusst, dass eigentlich nur diese tangentiale Beschleunigung eine Geschwindigkeitsänderung verursachen kann. Mir bereitet aber vieles Kopfzerbrechen:

  1. Muss ich die radialen Kräfte gar nicht betrachten?
  2. Wie finde ich eine zeitabhängige Funktion für beta? Die Winkelgeschwindigkeit ist ja wiederum von a_Bahn abhängig, da jagt doch die Katz den eigenen Schwanz.
  3. Ist das ohne Polarkoordinaten recht einfach machbar? Die dürfen wir nämlich nicht verwenden.
  4. Wie quantifiziere ich die Bewegung richtig? Im Endpunkt müsste die Masse ja sogar abgebremst werden.
  5. Muss ich über den Ansatz a_ges=a_rad+a_Bahn gehen? Wenn ja, muss ich bei a_rad auch die Radialkraft durch die Geschwindigkeit betrachten?

Ich verstehe dieses ganze System leider nicht. Es fühlt sich so an, als würde mir eine Zeitangabe oder so etwas fehlen. Danke für eure Hilfe, und euren Rat! Bitte schreibt nicht zu viel. Am Ende soll es trotzdem irgendwo noch Eigenleistung sein, und nicht reines Abschreiben. Das kenne ich als Antwortgeber sehr gut.

Bild zu Frage
Übungen, Studium, Schule, Mathematik, Technik, Beschleunigung, Formel, Hausaufgaben, Mechanik
Trägheitsprinzip Auto?

Hallo, ich habe eine kleine Frage.

Wenn ein Auto beschleunigt, wird man an den Sitz gepresst. Man wird nicht gegen den Sitz gepresst, wenn man sich mit der gleichen Geschwindigkeit, wie des Autos, bewegt. Jetzt zur Vorstellung: Jeder Körper ist träge, was bedeutet, dass er seinen Bewegungszustand beibehalten möchte. Wenn also durch das Auto eine Geschwindigkeit von 50 Kmh auf die Person übertragen wurde, dann wird er auch weiterhin mit 50kmh fahren wollen. Jetzt zu meiner Erklärung, wodurch man nach hinten gepresst wird und später zu meiner Frage: Wenn wir uns auf das Experiment der Münze und des Papiers beziehen, wobei das Papier unter Münze weggezogen wird, wird deutlich, dass je schwerer die Masse, desto langsamer müssen wir ziehen, um die Münze mitzubewegen. Es muss langsam erfolgen, damit sich die "Zugkraft" durch das Ziehen, lange genug entwickeln kann, um dem entgegengesetzen Widerstand (durch die Münze) entgegenzukommen/sie zu überwinden, sodass die Münze mitkommt. Im Auto sind wir die Münze. Wenn das Auto zu "schnell" beschleunigt, wird nicht genug "Zugkraft" (wie sollte man das hier nennen) entwickelt, um die Bewegungsänderung einzuleiten, sodass unser Körper stehen bleiben würde, bzw mit der Geschwindigkeit weiter fahren würde, die er hätte. Das bedeutet in der Theorie, dass wir vom Auto rauslassen würden, beziehungsweise nicht mehr im Auto sein könnten, da das Auto unser Bewegung nicht beeinflussen konnte. Wir müssten also vom Auto (nach hinten) "rausfliegen". Da jedoch ein Sitz da ist, werden wir dagegen gedrückt und bleiben im Auto. Meine Frage:

1. Wie nennt man das anders, als die Zugkraft?

2. Würde das heißen, dass "leichtere" Menschen weniger stark nach hinten gedrückt werden? Wenn ja warum eigentlich? Ich meine, wenn die Zugkraft/Beschleunigung nicht ausgereicht hat, um die Bewegungsänderung einzuleiten, wie soll das dann Auswirkungen auf die Stärke des Drückens haben?

Geschwindigkeit, Beschleunigung, Trägheit, Kinematik
Gibt es unendliche Geschwindigkeiten?

Die Frage mag jetzt zwar zunächst etwas unlogisch klingen, weil die Relativitätstheorie dagegen spricht und die maximal mögliche Geschwindigkeit in jedem Bezugssystem nun mal Lichtgeschwindigkeit ist was ich auch nicht bezweifle.

Viel mehr ist aber meine Frage so zu verstehen, dass die Definition der Maximalen Geschwindigkeit als Lichtgeschwindigkeit nicht etwa nur an der Definition von Geschwindigkeit an sich geschuldet ist?

Als Beispiel dazu betrachten wir ein Raumschiff welches von der Erde aus zum nächsten Stern Proxima Centauri reist. Es hat dabei im Bezugssystem der Erde eine Geschwindigkeit nahe c.

Die Zeitdilatation führt nun dazu, dass der Beobachter auf der Erde feststellen würde, dass an Bord des Raumschiffs die Zeit beinahe still steht.

An Bord des Raumschiffs würde aufgrund der Längenkontraktion die Strecke zu Proxima Centauri hingegen nahe 0 werden. Anders gesagt für die Person an Bord des Raumschiffes ist die Ankunft beinahe instantan und er ist dabei kaum gealtert. Das ist auch konsistent mit der Beobachtung auf der Erde.

Wenn man nun die Geschwindigkeit aus Sicht des Raumfahrers klassisch errechnen würde wäre er für sich aus gesehen beinahe unendlich schnell gewesen.

Für die Personen auf der Erde vergehen bis zur Ankunft aber natürlich die etwa 4 Jahre die man mit Lichtgeschwindigkeit zu dem Stern brauchen würde (Zwillingsparadoxon).

Nehmen wir nun eine Beschleunigung hinzu so müsste das Raumschiff beliebig lange beschleunigen um beliebig nahe der Lichtgeschwindigkeit zu kommen aus dem Bezugssystem der Erde und die scheinbare Beschleunigung nimmt dabei ab.

Der Raumfahrer selbst hingegen würde hingegen, in seinem System, für die Reise eine konstante Beschleunigung erfahren. Aus klassischer Sicht würde er also auch hier für sich betrachtet beliebig schnell werden.

Was natürlich auch wieder konsistent mit dem oben Genannten ist.

In keinem dieser Beispiele wird lokal relativistisch die Lichtgeschwindigkeit erreicht oder übertreten. Die Unterschiede ergeben sich dann wenn man das ganze am Ende wieder klassisch betrachtet.

Der Grund warum ich eigentlich diese Frage anstoße ist eher, ob so eine Begründung dazu geeignet wäre für Laien so Dinge wie die Reisezeit zu anderen Sternen mit hohen Geschwindigkeiten zu erklären. Da ich es so anschaulicher finde. Viele Stoßen sich am Ende mit der Zeitdilatation oder ähnlichen diese Analogie würde es aber meiner Meinung nach etwas leichter erklärbar machen.

Universum, Astrophysik, Beschleunigung, Lichtgeschwindigkeit, Naturwissenschaft, Physik, Raumfahrt, Relativitätstheorie
Ist die Fallbeschleunigung eines Körpers, wenn man diesen zusätzlich mit einer gewissen Kraft zum Boden hin anschubst, größer als die normale von 9,81m/s2?

Also ich bin mir nicht ganz sicher, ob ich das so richtig durchdacht habe, deshalb würde ich mich echt freuen, wenn ihr mir das sagen könntet:D

Wenn man jetzt auf der Erde steht und einen Körper hat, z. B. einen Ball, und diesen auf einer bestimmten Höhe hält, dann ist die Beschleunigung erstmal 0m/s2, der Körper ist im Stillstand, weil der Körper (Ball) dann eine Kraft (also die Gewichtskraft des Körpers) auf die Halterung (Hand) wirkt, die Hand aber eine gleich große, entgegengesetzte Kraft auf den Ball ausübt (3. Newtonsches Gesetz). Wenn man diesen dann loslässt, wirkt nur noch die Gewichtskraft auf den Ball, und er fällt mit einer konstanten Erdbeschleunigung von 9,81m/s2, wobei die Geschwindigkeit mit der Strecke, die der Ball gefallen ist, konstant zunimmt.

Das heißt dann:

Fges=Fg

m*a=m*g geteilt durch m

a=g

und die Beschleunigung auf der Erde ist rund 9,81m/s2.

Jetzt habe ich mir aber diese Frage gestellt:

Wenn man diesen Körper nicht einfach nur fallen lässt, sondern ihn noch Richtung Boden anschubst, fällt er ja schneller, also mit einer größeren "Anfangsgeschwindigkeit", als wenn man ihn nur fallen lässt. Das heißt, auf den Körper wirkt nicht nur dessen Gewichtskraft, sondern auch die Kraft, mit der man anschubst.

Das müsste dann heißen, dass die resultierende Kraft sich aus der Gewichtskraft plus der "Anschubkraft" zusammensetzt (wegen dem Superlationsprinzip/4.Newtonschen Gesetz).

Fges=Fg+Fa

wenn man dann das 2. Newtonsche Gesetz mit F=m*a nimmt, müsste dann sowas rauskommen:

m*ages=m*g+m*a1

Man kann dann ja die Masse m rauskürzen, indem man geteilt durch die Masse rechnet, weil die Masse ja gleich bliebt.

dann würde sowas rauskommen:

ages=g+a

Heißt das dann, dass die Beschleunigung, wenn man den Körper (Ball) zusätzlich anschubst, größer ist als die Beschleunigung wenn man den Körper (Ball) nur normal fallen lässt? Und ist meine Betrachtung richtig?

Also, dass ages > 9,81 m/s2

Oder habe ich einen Denkfehler? Wenn ja, dann ist meine Frage, warum der Körper dann mit einer größeren Geschwindigkeit fällt und somit schneller auf dem Boden aufschlägt, wenn er noch angeschubst wird, als wenn er nur fallengelassen wird?

Bewegung, Geschwindigkeit, Energie, Kraft, Beschleunigung, Formel, Gravitation, Mechanik, Physik, Physiker, freier Fall, Gewichtskraft, Kinematik, Newtonsche Gesetze, Spannenergie

Meistgelesene Fragen zum Thema Beschleunigung