Funktionsgleichung – die neusten Beiträge

Richtig gelöst😄? Funktionsuntersuchungen bei realen Prozessen?

Hey ihr lieben, ich habe diese Matheaufgabe erhalten und wollte euch fragen, ob jemand schauen könnte, ob ich dies richtig gelöst habe :-).

Eine Abteilung produziert Fernseher. Die Kosten können durch die Funktion K(x) = 0,01 x3 - 1,8 x2 + 165 x beschrieben werden, wobei x die tägliche Stückzahl ist. Die Maximalkapazität beträgt 160 Geräte pro Tag. Verkauft wird das Produkt für 120 € pro Gerät.

a) Gesucht ist die Gleichung der Gewinnfunktion G.

G(x)=E(x)−K(x)

G(x)=120x-(0,01x³-1,8x²+165x)

G(x)=120x−0,01X^3+1,8x^2−165x

G(x)=−0,01x^3+1,8x^2−45x

b) Wie viele Geräte müssen produziert werden, um einen Gewinn zu erzielen?

E(x) = 120 x

G(X) = 120x - (0,01 x^3 - 1,8 x^2 + 165 x)

G(x)= 120x - 0,01 x^3 + 1,8 x^2 - 165 x

G(x) = - 0,01 x^3 + 1,8 x^2 - 45x

G(x) > 0 :

- 0,01 x^3 + 1,8 x^2 - 45x >0 |*(-1)

0,01 x^3 - 1,8 x^2 + 45x <0

Nullstellen ausrechnen:

x(0,01*x^2-1,8x+45)<0

0,01*x^2-1,8x+45=0 | :0,01

x^2-180x+4500

p/q Formel

x1/2=90 ± wurzel(90^2-4500)

x1 = 90 + 60 =150

x2 = 90 - 60 =30

Bei der Stückzahl 30 und 150 macht man weder Gewinn noch Verlust. Ab x=30 geht es in die Gewinnzone, ab 150 machen wir wieder Verlust.

c) Welches Produktionsniveau maximiert den Gewinn?

Also ein lokales Maximum von G(x) im Intervall 60,150 suchen:

G(x) = - 0,01 x^3 + 1,8 x^2 - 45x

G'(x)= -0,03 x^2 +3,6 x -45

G'(x) = 0 setzen. also Nullstellen suchen.

0= -0,03 x^2 +3,6 x -45 | :-(0,03)

0= x^2-120x+1500

x1/2=60 ± wurzel(60^2-1500)

x1= 60 + 45,8 = x1 = 106

d) Wie groß müsste der Verkaufspreis sein, damit bei Vollauslastung kein Verlust entsteht?

G(X) = 120x - (0,01 x^3 - 1,8 x^2 + 165 x)

die muss für x=160 größer Null sein und die 120 wird zur Variable:

0<160a - 40960 + 46080 - 26400

0<160a -21280 | +21280

21280<160a | :160

133 < a

Bei einem Verkaufspreis von mindestens 133 euro entsteht kein Verlust mehr.

Ich freue mich über jede Hilfe :-)

Computer, Schule, Mathematik, Kosten, Gewinn, Mathematiker, quadratische Funktion, Funktionsgleichung, Mathe-Leistungskurs, Mathearbeit, Mathe-Abitur

Wie kann ich aus einem Graphen die Funktionsgleichung ablesen?

Mal vorgestellt, ich hätte eine lineare Funktion, und den dazugehörigen Grafen. Hier weißt ich auch, wie ich die Funktionsgleichung ablese, nämlich markiere ich 2 Punkte, und mache m=(y1-y2)/(x1-x2), und so finde ich m heraus. Aber c kann man ablesen. Mal angenommen, man könnte c nicht ablesen, weil der Graf an einer anderen Stelle fotografiert worden sei, wie würde ich in dem Falle mein c von der Funktionsgleichung y=mx+c herausbekommen? Also kann ich c auch irgendwie ausrechnen, oder muss ich das ablesen können, weil ich keine andere Wahl habe? Das kling komisch, aber ich bin mir sicher, dass man das nicht berechnen kann, sondern nur die Gleichung. Aber ich will jede Zweifel abschaffen :D. Okay, nun wie mache ich das bei einer quadratischen Funktion? Ich habe den Grafen, und muss auf Grundlage dessen eine Funktionsgleichung aufstellen, wie mache ich das. Und mal angenommen, ich hätte als Grundlage nichtmal den Grafen, sondern nur 2 Punkte, wie mache ich es dann? Was mache ich bei den restlichen Potenzfunktionen, wie kann ich bei denen anhand zweier Punkte den Funktionsgleichung bestimmen? Geht das überhaupt? Und auf welche Weise mache ich es bei Exponenzialfunktionen?

Mir ist sehr wichtig, dass auf jeden Fall die dick markierten Fragen beantwortet werden, da ich überhaupt keine Quelle finde, wo ich das nachschlagen kann, nicht mal in einem Schüler-Mathebuch.

Schule, Mathematik, Funktion, Punkte, quadratische Funktion, Funktionsgleichung, Linear

Meistgelesene Beiträge zum Thema Funktionsgleichung