Matrix – die neusten Beiträge

Matrix. Würdet ihr dir rote oder blaue Kapsel wählen?

Hey, ich war gerade in Matrix 4 im Kino und wollte mal gerne von euch wissen, ob ihr die rote oder die blaue Kapsel nehmen würdet, wenn ihr euch entscheiden müsstet. Und bitte mit Begründung :)

Ich persönlich würde ja rot nehmen, aber mir würde die Entscheidung wohl nicht ganz leicht fallen.

Ich möchte auf jeden Fall gerne die Wahrheit kennen und nicht ein Leben leben, wo alles, was passiert und es gibt mir nur vorgegaukelt wird. Denn nur so kann ich für Gerechtigkeit kämpfen, und das ist mehr sehr wichtig. Aber mir würde wie schon gesagt diese Entscheidung trotzdem schwerfallen. Ich denke, dass auch die blaue Kapsel in mancher Hinsicht eigentlich sehr verlockend sein kann. Dir wird ein wunderschönes Leben geboten, ohne Probleme, Sorgen und Kummer. Manche würden vermutlich absolut glücklich leben, und ich wäre eigentlich zugegebenermaßen jetzt auch nicht ganz abgeneigt davon. Aber ich denke, wenn dieses Leben, das ansich so perfekt erscheint und verlockend, wie glücklich wären wir dann in solch einer Welt wenn wir wüssten, dass all das uns einfach nur so in die Wiege gelegt wurde. Wir haben nichts dafür getan, nicht dafür gekämpft, mussten überhaupt nichts dafür tun und nichts erreichen, um jetzt dieses Leben zu haben, wie viel wert ist es uns denn dann noch? Können wir dann überhaupt stolz darauf sein, auf das was wir haben, obwohl wir nie irgendetwas dafür tuen mussten? Weil es uns einfach so zugeflogen ist? In einer Welt der Matrix, die genauso schon immer so existiert hat und auch genauso immer weiterexistierend wird, ohne das jemand wirklich jemals etwas für den Wohlstand dieser Welt tun musste. Ich denke nicht.

Aber ich bin sehr gespannt auf eure Meinung und freue mich auf eine spannenden Meinungsaustausch untereinander!

Matrix, reales leben

Erklärung zu den Pauli Matrizen?

Hallo liebe Community,

ich beschäftige mich gerade mit den Pauli Matrizen und habe da ein paar Verständnisfragen.

Die Pauli Matrizen sind ja folgende:

und dazu nimmt man ja meistens noch die Matrix

.

Dabei ist dann ja



und 

Es steht auf mehereren Websiten, dass die Paulimatrizen mit der Einheitsmatrix Sigma0 eine "Basis des 4-dimensionalen rellen Vektorraums aller komplexen hermiteschen 2 x 2 Matrizen" bildet und auch eine "Basis des 4-dimensionalen komplexen Vektorraums aller komplexen 2 x 2 Matrizen" bildet.

Was genau ist damit jetzt gemeint?

Also den Fakt, dass die Paulimatrizen eine Basis zu einem reellen Vektorraum und zu einem komplexen Vektorraum bilden, habe ich mir folgendermaßen erklärt: Um zu prüfen, dass etwas eine Basis ist, muss man ja schauen ob die Vektoren in B sozusagen linear unabhängig sind. (Wir gehen mal davon aus, dass die Vektorräume jeweils endlich erzeugte Vektorräume sind).

Da habe ich mir dann gedacht, dass man ja sozusagen einfach alle 4 Matrizen so umformulieren kann, dass es komplexe Zahlen sind, also einfach so:

Und da ja schon gesagt wurde, dass die eine Basis bilden, heißt, dass das die linear unabhängig sind und da jetzt alle Matrizen Element der Komplexen Zahlen 2 x 2 sind bilden sie halt eine Basis für den Vektorraum der komplexen Zahlen.

Dies macht man dann auch noch für die reellen Zahlen. Dort wandelt man die Matrix Sigma2 in eine Relle Matrix um. Man sagt einfach i = 1 und -i = -1. Und da dort dann alle Matrizen Element der Reelen Zahlen 2 x 2 sind bilden sie halt eine Basis für den Vektorraum der reellen Zahlen.

Das war ersteinmal mein Erklärversuch dafür, dass die Paulimatrizen eine Basis für den reelen Vektorraum bilden als auch für den komplexen Vektorraum. Ich würde mich sehr freuen falls mir jemand erklären könnte inwiefern mein Versuch richtig ist.

Die Grundlage meiner Idee war folgendes:

Auf jeden Fall muss es irgendwas damit zu tun haben, dass eine Komplexe Zahl so aufgebaut ist: a+b(i) mit a,b Element der Reelen Zahlen.

Meine konkreten Fragen sind also:

  1. Wie kann es sein, dass die Paulimatrizen eine Basis für den reellen Vektorraum bilden und eine Basis für den komplexen Vektorraum?
  2. Was bedeutet Zitat "die Paulimatrizen bilden eine Basis des 4-dimensionalen reellen Vektorraums aller komplexen hermiteschen 2 x 2 Matrizen"?

Ich würde mich sehr über Antworten freuen :)

Bild zum Beitrag
Schule, Mathematik, lineare Algebra, Matrix, Vektorrechnung

Hat der Film "Matrix" eine tiefere Bedeutung?

Im Film wird die Gesellschafft und die Art wie die Menschen leben als ein Sklaventum bzw Matrix beschrieben. Steuern zahlen, arbeiten, nachhause kommen, Einkaufen, Nachrichten und Fernsehen gucken. Nichts hinterfragen. Funktionieren. Im Film wird gesagt das diese Art von Leben Sklaverei sei und wir nur als Batterien für ein System dienen.

Manche sagen es sei einfach nur aus der Luft gegriffen und eine reine Erfindung. Aber es wird genau UNSERE reale Realität als Scheinwelt beschrieben welche ja keine Erfindung sein kann.

Zitate aus dem Film:

"Die meisten sind noch nicht bereit abgekoppelt zu werden. Sie glauben zu sehr an diese Illusion"

"Du spürst dein ganzes Leben das mit dieser Welt etwas nicht stimmt"

Das trifft zb auf mich und viele andere Menschen zu!

"Die Matrix ist allgegenwärtig sie umgibt uns. Es ist eine Scheinwelt die man dir vorgaukelt um dich von der Wahrheit abzulenken. Die Wahrheit das Du ein Sklave bist"

Meint ihr echt die Macher des Films sagen in Wirklichkeit: Nein alles quatsch, diese Welt ist super, wir sind natürlich keine Sklaven sondern völlig freie Wesen. Das haben wir nur so erfunden."

Wie kommt man allein auf die Idee sowas zu erfinden also unsere Realität Gesellschafft und System als Scheinwelt zu bezeichnen obwohl man es eigentlich nicht ernst meint??

Selbst eine Schauspieler aus dem Film sagte mal es sei kein Film sondern eine Doku!

Also für mich steht klar fest das der Film eine tiefe Bedeutung hat. Es ist mehr als nur ein Film. Es ist eine Aussage. Eine Message. Natürlich stoßt diese Gesellschafft diese tiefgründigen Gedanken ab und fokussiert sich nur aufs oberflächliche.

Ja der Film hat eine tiefere und wahre Bedeutung! 90%
Nein alles reine Erfindung. 10%
Tiefgründige Bedeutungen gibt es nicht nur oberflächliches! 0%
Film, Psychologie, Filme und Serien, Matrix, Philosophie und Gesellschaft

Java: Wie kann ich die Werte für die Matrix einlesen, nachdem ich die Spalte und Zeile eingelesen habe?

Ich stecke bei einer Aufgabe leider etwas fest.

Schreiben Sie ein Programm  Matrix, welches ein zweidimensionales Array übergeben bekommt und die Summe aller Werte in diesem Array berechnet.
Das erste, von der Konsole übergebene Argument, ist die Anzahl der Zeilen. Das zweite die Anzahl der Spalten des Arrays. Die restlichen Argumente sind Werte, mit denen das Array gefüllt werden soll. Gehen Sie davon aus, dass nur ganze Zahlen (positiv und negativ) übergeben werden.
Ihr Programm soll erst die Summe und anschließend die gesamte Matrix zeilenweise ausgeben. Falls zu wenige, oder zu viele Argumente von der Konsole übergeben werden oder die übergebenen Größenwerte negativ sind, soll Ihr Programm eine Fehlermeldung ausgeben, welche das Wort  ERROR enthält.
Eine Matrix der Größe 0 x 0
0×0 zählt als valide Matrix und hat die Summe $0$.

Ich habe bereits einen Ansatz zum Einlesen der Matrix. Dieser funktioniert aber nicht so ganz und ist noch unvollständig, da ich bei einigen Sachen nicht weiter komme.

Zum Beispiel, wie ich die Werte einlesen soll, nachdem ich die Spalte und Zeile eingelesen habe.

public class Matrix {
  public static void main(String[] args) {
    int zeile = Integer.parseInt(args[0]);
    int spalte = Integer.parseInt(args[1]);
    int Werte = Integer.parseInt(args[2]);
    int sum = 0;

    int[][] matrix = new int[zeile][spalte];

    for (int i = 0; i < zeile; i++) {
      for (int j = 0; j < spalte; j++) {
        matrix[i][j] = ???
        sum = matrix[i][j] + matrix[i][j];
      }

      System.out.println(sum);
      System.out.println(matrix[i][j]);
    }            
Schule, programmieren, Java, Array, Matrix

Meistgelesene Beiträge zum Thema Matrix