Kombinatorik – die neusten Beiträge

Was ist der Unterschied zwischen nCr und nPr?

Guten Tag,

meine zusammengefassten Fragen (Lediglich 3 Stück: 1., 2., 3.) befinden sich weiter unten zwischen den Hastags eingeschlossen.

Ich frage mich, was der Unterschied zwischen der „nCr“-Taste und der „nPr“-Taste ist, also wenn man den Binomialkoeffizienten im Taschenrechner berechnet.

  • Die „nCr“-Taste wird ja benutzt, wenn die Reihenfolge egal ist. C -> Combinations (= Kombinationen).
  • Die „nPr“-Taste wird ja benutzt, wenn die Reihenfolge beachtet wird. P -> Permutations (= Permutationen).

Doch was rechnet der Taschenrechner anders, wenn ich die „nCr“-Tase bzw. die „nPr“-Taste verwende? Hierfür habe ich im Folgenden ein paar Beispiele gemacht, um es zu verstehen:

  • (1)

5 nCr 0 = 1

5 nPr 0 = 1

  • (2)

4 nCr 2 = 6

4 nPr 2 = 12

  • (3)

6 nCr 2 = 15

6 nPr 2 = 30

  • (4)

4 nCr 3 = 4

4 nPr 3 = 24

  • (5)

6 nCr 3 = 20

6 nPr 3 = 120

  • (6)

8 nCr 3 = 56

8 nPr 3 = 336

  • (7)

5 nCr 4 = 5

5 nPr 4 = 120

  • (8)

7 nCr 4 = 35

7 nPr 4 = 840

  • (9)

9 nCr 4 = 126

9 nPr 4 = 3.024

Feststellungen zu den Beispielen:

  • Bei den Beispielen (1)-(3) verdoppelt sich das Ergebnis bei der Verwendung der „nPr“-Taste im Vergleich zur „nCr“-Taste einfach, da es doppelt so viele Möglichkeiten gibt, für zwei gleiche Sachen, wenn die Reihenfolge berücksichtigt wird.
  • Bei den Beispielen (4)-(6) versechsfacht sich das Ergebnis immer, wenn man die „nPr“-Taste statt der „nCr“-Taste verwendet.
  • Bei den Beispielen (7)-(9) vervierundzwanzigt sich das Ergebnis immer, wenn man die „nPr“-Taste statt der „nCr“-Taste verwendet.

############################

  1. Nun frage ich mich, was sich bei der Berechnung beim Taschenrechner verändert, wenn statt der „nCr“-Taste die „nPr“-Taste verwendet wird und umgekehrt. Könnt ihr mir das sagen, was der Taschenrechner da anders berechnet?
  2. Wieso ist immer die Veränderung im Vielfachen in meinen Beispielen (1)-(3); (4)-(6); (7)-(9) gleich, wenn ich statt der „nCr“-Taste die „nPr“-Taste verwende? Gibt es dafür eine Begründung?
  3. Wieso kommt bei Beispiel (1) immer 1 raus? Wieso kommt immer 1 raus, wenn unten im Binomialkoeffizient 0 steht? Kann mir dafür jemand ein einfaches Beispiel in Form einer „Aufgabe“ geben?

############################

Beispiel zur Verwendung der „nCr“-Tase im Taschenrechner:

Paul, Julian, Fritz und Thomas möchten zusammen Tennis spielen. Wie viele Möglichkeiten für Zweierteams gibt es (Die Reihenfolge der Nominierung der Spieler in den Teams ist egal)?

Hierbei gibt es ja 4 über 2 Möglichkeiten, also den Binomialkoeffizienten (4 2). Hier verwenden wir nCr, da die Reihenfolge nicht berücksichtigt wird. Es ist also egal, ob für ein Zweierteam zuerst der eine Spieler oder erst der andere Spieler nominiert wird.

4 nCr 2 = 6

Beispiel zur Verwendung der „nPr“-Tase im Taschenrechner:

Paul (1), Julian (2), Fritz (3) und Thomas (4) möchten zusammen Tennis spielen. Es werden Zweierteams gebildet. Beide Nummern der Spieler bilden zusammen eine zweistellige Zahlenfolge (Beispiel: Paul (1), Julian (2) = 12 ≠ Julian (2), Paul (1) = 21). Wie viele verschiedene Zahlenfolgen gibt es?

4 nPr 2 = 12

rechnen, Zahlen, Logik, Mathematiker, Statistik, Stochastik, Taschenrechner, Wahrscheinlichkeit, Binomialverteilung, Kombinatorik

Wozu ist eine obere Schranke nötig, die Lösung ist doch eindeutig? (Uni-Mathematik) (Leichte Kombinatorik)?

Ich hatte zunächst diese Frage gestellt, mit dem Hintergrund, dass mir jemand bei der Lösung hilft, wo mir auch zwei Personen im Forum geholfen haben. Nun habe ich mich gestern Nacht dazu entschieden, die KOmbinatorik, da wir dies im Studium nicht hatten, selbst nachzuholen, mit meinem neuen Wissen, bin ich der Meinung ich habe die Lösung zur a), aber verstehe nicht, warum von einer oberen Schranke gesprochen wird!

Es geht um die a)

So sieht das Spiel aus:

Das ist die Spielanleitung:

So nun die Lösung:

die a) besteht aus 3 Fragen, wobei man beachten muss, im Gegenzug zur Spielanleitung, sind alle Steine gleichgefärbt:

1. Zwischen wie viel Möglichkeiten muss man sich im schlimmsten Fall entscheiden?

Alle Steine sind gleich gefärbt, das heißt, ich kann am Anfang einfach alle Steine legen und ich habe somit nicht nur 10 Möglichkeiten, wie in der Anleitung stehend, bei 12-RR, sondern es heißt somit wir haben 11 Steine, alle gleich gefärbt, somit habe ich 11 Möglichkeiten.

Bei einem beliebigen, also n mit n-RR habe ich n-1 Möglichkeiten.

2.Wie lange dauert es (Anzahl der Züge) bis das Spiel zu Ende ist?

hier ist es bei 12-RR mit 11 Steinen somit auch so, dass es 11 Züge sind. und bei beliebigem n sind es n-1 Züge

3. Wie viele verschiedene Kombinationen gibt es?`

Hier wäre die Lösung somit 11!, korrekt? Und bei beliebigem n wäre es (n-1)!

Nun meine Frage, inwiefern eine obere Schranke aufstellen, ich muss hier doch nichts approximieren, die Lösungen sind doch klar definiert oder habe ich einen Denkfehler?

Bild zum Beitrag
Mathematik, höhere Mathematik, Kombinatorik

S.O.S. Wie löse ich diese Aufgabe in Kombinatorik?

Hallo liebe Mathe-Profis,

ich brauche dringend euer Talent. Ich habe die folgenden Aufgaben gelöst, aber ich habe nicht das Gefühl, dass sie richtig sind, und Kombinatorik ist ein Thema, bei dem ich kein Gefühl für die richtigen Antworten habe🙁. Ich füge unten ein Bild mit meinen Antworten an.

1. Sie arbeiten als Geschäftsführer in einem Softwarehaus und haben für dieses Softwarehaus 4 Großprojekte P1, P2, P3, P4 akquiriert. Sie haben als Projektleiter für diese Großprojekte PL1,PL2,PL3,PL4 benannt. In dem Softwarehaus gibt es 7 Entwicklerteams E1,E2,...,E7. Diese Teams können in den 4 Großprojekten eingesetzt werden. Dabei sollen die Mitarbeiter eines Teams aber stets die gleichen Projekte bearbeiten.

(a) Wie viele Möglichkeiten gibt es, wenn alle 4 Großprojekte bear- beiten werden sollen?

(b) Wie viele Möglichkeiten gibt es, wenn das erfahrenste Team E1 im schwierigsten Projekt P1 eingesetzt werden soll?

(c) Alle 4 Großprojekte sind erfolgreich abgewickelt worden. Als Provision erhalten Sie vom Softwarehaus 100 Geldeinheiten.

i. Wie viele Möglichkeiten gibt es, diese Geldeinheiten an die Projektleiter weiter zu geben? Die 4 Projektleiter können auch leer ausgehen.

ii. Wie viele, wenn Sie mindestens 30 Geldeinheiten, Projektleiter P L1 mindestens 20 Geldeinheiten, Projektleiter P L2 mindestens 15 Geldeinheiten und Projektleiter PL3 mindestens 10 Geldeinheiten bekommen?

Hinweis: Bitte berechnen Sie nicht die konkreten Werte, sondern geben Sie an, wie diese berechnet werden können, d.h. die entsprechende Formeln zur Berechnung der Ergebnisse sind anzugeben!

Bild zum Beitrag
Statistik, Stochastik, Kombinatorik

Unterschiedliche Wahrscheinlichkeiten Lotto?

Hallo,

Ich habe eine Frage aus dem Bereich Kombinatorik:

Die Wahrscheinlichkeit, im Lotto alle Richtigen zu haben liegt bei 1:140mio, das errechnet sich über den Binominalkoeffizienten. Gibt man zwei Tipps im selben Spiel ab, liegt die Wahrscheinlichkeit bei 2:140mio, also 1:70 Mio, bei 70 Mio Tipps im selben Spiel 70mio:140mio,also 1:2, bei 140 Mio Tipps 140mio:140mio,also bei 100%. Ist ja logisch, denn wenn man alle 140 Mio möglichen Kombinationen tippt, muss zwangsläufig die richtige mit dabei sein.

Die Gewinnchance liegt also bei n*(1/140 Mio), wobei n die Anzahl der Tipps in einer Ziehung ist.

Wie verhält es sich, wenn man die Tipps nicht in der selben Ziehung, sondern immer nur einen pro Ziehung abgibt? Wenn man z. B. An 2 Tagen jeweils einen Tipp abgibt, muss die Wahrscheinlichkeit natürlich höher sein, als wenn man nur an einem Tag einen Tipp abgibt. Sie muss aber geringer sein, als wenn man die zwei Tipps am selben Tag abgibt. Wenn man in 140 Mio unterschiedlichen Tagen jeweils einen Tipp abgibt, ist das natürlich keine Garantie dafür, dass man auch mal gewinnt im Gegensatz zum obigen Beispiel, wenn man alle 140 Mio Tipps an einem Tag abgibt. Z. B. Wenn man 140 Mio mal den selben Tipp abgibt. Es gibt ja keine Garantie, dass bei 140 Mio Ziehungen genau die eine Kombination vorkommt, es können in diesem Fall ja auch gleiche Zahlenkombinationen mehrfach vorkommen.

Lotto, Wahrscheinlichkeit, Kombinatorik

Meistgelesene Beiträge zum Thema Kombinatorik