Rechnen – die neusten Beiträge

Wärmekapazität und latente Wärme?

Die Zeit läuft davon...

Aufgabe:

"In einem Glas befinden sich 0.5 Liter Wasser bei einer Temperatur von T2 = 20◦C. a) Wieviel Wärme muss dem Wasser entzogen werden, um es auf die Temperatur T1 = 5◦C abzukühlen?
Hinweis für flüßiges Wasser beträgt die spezifische Wärmekapazität c_Wasser = 4.2 Jg−1K−1 . Die Dichte beträgt ρWasser = 1.0 cm−3 .

(b) In das Wasserglas aus (a) bei der Temperatur T2 = 20◦C wird ein Eiswurfel der ¨ Temperatur T0 = −18◦C gegeben. Wie groß muss die Masse des Eiswurfels ¨ mEis (gemessen in g) sein, damit nach dem vollständigen Schmelzen die Temperatur des Wassers gerade T1 = 5◦C beträgt? (Gib den berechneten Wert gerundet auf drei signifikante Stellen an.)

Hinweis: Spezifische Wärmekapazität von Eis: cEis = 2.0 Jg−1K−1 . Schmelzwärme: ∆QS = 333.5 Jg−1 . Schmelztemperatur: TS = 0◦C."

Jensek81'scher Ansatz:
a) 0, 5l = 500 cm³ = 0, 5 dm³ = 0,5 * 10^-3 m
m*p* V = 1,0 g /cm³ * 0,5 * 10^-3 m³ = 500 g

Temperaturveränderung ∆ T = T2 - T1 = 20 Grad -- 5 Grad = 15 Grad

∆Q = cw * mw * ∆T = 5,2 J / g C * 500 g * 15 C = 31500 J

b) Zunächst wird das EIs von -18 Grad au f0 Graad erwämt. Dazu wird Wärme Q1 benötigt.

Q1 = m * c * ∆T = 2,0 J/kgK * 18 Grad = 36 kJ/kg
Dann wird Eis geschmolzen. Dazu Wärme Q2

Q2 = m * q = m * 335, Jg^-1
Um das geschmolzene Wasser auf 5 Grad zu erwärmen ist Q3 erforderlich.

Q3 = m * c * ∆T = m * 4,2 Jg^-1/K^^1 * 5 K = m * 21 kJ/Kg

Q = Q1 + Q2 + Q3

m * 36 kJ/kg + m * 333,5 kJ/Kg + m * 21 kJ/kg = 31500 J
m (36 kJ/Kg + 333,35 kj/kg + 21kJ/Kg) = 31500 J
m + 390,5 kJ/kg = 31500 J

=> m = 31500 J/ 390,5 kJ/g = 80,66 g

Der Eiswrüfel hat 80,66 g

Kann das sein? oder ist das Kakolores?

Mit freundlichen Grüßen.
Ach, jetzt hätt ich schon fast ausversehen meinen Klarnamen geschrieben.
Seht ihr, soweit kommt's noch. Hahaha
Also, nochmal:

Mit freundlichen Grüßen,
Jensek81

Wasser, Mathematik, Temperatur, Eis, rechnen, denken, Wärme, Eiswürfel, Experimentalphysik, Physik, Thermodynamik, Wärmelehre, Kapazität, addieren

[Mathe] Anhand Schaubild den Grad einer Funktion bestimmen?

Einen wunderschönen guten Abend,

ich habe noch ein paar Fragen zu folgender Aufgabe. Im folgenden befindet sich ein Bild der Aufgabe und ein Bild des Lösungsvorschlags. Danach befinden sich meine Fragen (meine Fragen beziehen sich ausschließlich auf Aufgabenteil (1)).

Ich habe bei der Aufgabe alles bis auf den Aufgabenteil (1) perfekt verstanden. Hier sind meine Fragen zu dem Aufgabenteil (1):

  1. Wie kann man anhand eines gegebenen Schaubildes bestimmen, welchen Grad die Funktion haben muss? Geht das nur, indem man sich die Wendepunkte anschaut?
  2. Das habe ich denke ich jetzt verstanden (die Fragen waren nur mein Gedankengang): Warum kann man sagen, dass wenn es wie hier beim gegebenen Schaubild vier Wendepunkte gibt, dass es keine Funktion vierten Grades sein kann? Ich verstehe, dass wenn man eine Funktion vierten Grades zweimal ableitet es nur noch eine Funktion vom Grad zwei ist. Aber wieso kann man aus der zweiten Ableitung, welche in diesem Fall Grad 2 ist (bei einer ursprünglichen Funktion vierten Grades) daraus schließen, dass sie keine vier Wendepunkte haben kann? Weil die Ableitung also nur maximal zwei Ergebnisse haben kann. Also müsste in diesem Fall die Funktion mindestens von Grad 6 sein, um zum abgebildeten Schaubild zu passen.
  3. Gibt es noch eine andere Möglichkeit, um eine solche Aufgabe wie hier beantworten zu können, ohne auf die Wendepunkte einzugehen?
  4. Ist dieser Lösungsweg wie hier in dem Lösungsvorschlag der einfachste?
  5. Inwiefern haben die gemeinsamen Punkte einer Funktion mit der x-Achse einen Zusammenhang mit dem Grad einer Funktion?
  6. Inwiefern haben die maximal möglichen Punkte einer Funktion mit der x-Achse einen Zusammenhang mit dem Grad einer Funktion?

Ich freue mich über eure hilfreichen Antworten.

Bild zum Beitrag
rechnen, Funktion, Ableitung, Exponentialfunktion, Gleichungen, Integralrechnung, Kurvendiskussion, Mathematiker, Nullstellen, Funktionsgleichung, Graphen, Wendepunkt, Analysis

Meistgelesene Beiträge zum Thema Rechnen