Formel – die neusten Beiträge

Elektrisches Feld Volumenintegral?

Okay, ich versuche es mal zusammenzusammenzufassen. Um ein el Feld mit mehreren Ladungen auszurechnen, kann man es einmal simpel zusammenrechnen mit den jeweiligen Qs und Rs (R ist der Ortsvbektor von Q). Und als andere Möglichkeit gibt es die Formel Q= Ladungsdichte*V (parallel zu m=rho*V), und für das Volumen muss man r nach die 3 Koordinaten integrieren oder ableiten? Dementsprechend wird Q ganz unten mit "Volumenintegral nach d^3r von Ladungsdichtefunktion" ersetzt. Meine Fragen:

  1. Ich verstehe das mit dem Volumenintegral nicht ganz. Es geht ja darum, dass in einem Volumen eine Ladung ist und die Ladungsdichte überall anders ist. Dementsprechend kann man nicht gleich nach dem ganzen Volumen gehen, sondern integrieren, um Q nur an dem speziellen Punkt auszurechnen, weil es an jedem Punkt anders ist... oder? Mich macht es stutzig, dass ich etwas verstanden habe, weil meistens ist es dann falsch.
  2. Wie kann man die rechnerische Vorgehensweise mit diesem Volumenintegral erklären? Ich kann die praktische Erklärung irgendwie nicht mit der Rechnung verbinden.
  3. Wie funktioniert diese rechnerische Vorgehensweise? Jeder sagt was anderes. Muss man das Volumenintegral von d^3r*p(r) nehmen? Oder das Volumenintegral über d^3r nach p(r), oder anders?
  4. was ist diese Ladungsdichtefunktion überhaupt? Muss da nicht eine Formel sein, um es integrieren zu können?`Auf Google habe ich aber nirgendwo eine gefunden.
  5. was bedeutet das dxdydz=d^3r? Was ist hier mit r gemeint? Ich meine eine Seitenlänge gibt es hier nicht... Oder? Und wie rechnet man es aus? Heißt das, man nimmt die Ableitung von Vektor r nach den Koordinaten?

Das waren alle Fragen. Ich bin aber auch schon dankbar, wenn ihr nur eine beantworten könnt.

Bild zum Beitrag
Strom, Energie, Volumen, Elektrotechnik, Elektrizität, Formel, Ladung, Mechanik, Physiker, Vektoren, elektrisches Feld, Elektronen

Ist diese Beschleunigungs-Rechnung richtig?

Hi. Ich habe mich mal spaßeshalber an eine Physikaufgabe gesetzt und bin mir nicht ganz sicher, ob ich diese richtig gerechnet habe.

Hier einmal die Aufgabenstellung:
Bei einer wissenschaftlichen Untersuchung beschleunigte ein Wanderfalke, der auf einer Höhe von 372 m flog, von 40km/h, um nach 16 Sekunden eine Taube auf einer Höhe von 38m über dem Erdboden zu schlagen. Die horizontale Distanz zwischen den Messpunkten betrug dabei 702m.

a) Berechne die mittlere Beschleunigung des Wanderfalken während seines Sturzfluges.
Hier einmal meine Rechnung:

Ich habe zur Überprüfung auch noch einmal ChatGPT gefragt.
Die Lösung von ChatGPT und mir stimmen nicht überein.
Hier der Lösungsansatz von ChatGPT:

Zunächst müssen wir die Endgeschwindigkeit des Wanderfalken berechnen, wenn er die Taube schlägt. Wir können die kinematische Gleichung verwenden:

v_f^2 = v_i^2 + 2ad

wobei v_f die Endgeschwindigkeit ist, v_i die Anfangsgeschwindigkeit, a die mittlere Beschleunigung und d die Entfernung zwischen den Messpunkten.

Da der Wanderfalke von 40 km/h auf Null beschleunigt, ist seine Anfangsgeschwindigkeit v_i = 40 km/h = 11.11 m/s. Die Entfernung zwischen den Messpunkten ist d = 702 m. Wir setzen diese Werte in die Gleichung ein und lösen nach v_f auf:

v_f^2 = (11.11 m/s)^2 + 2a(702 m)
v_f^2 = 123.21 m^2/s^2 + 1404a
v_f^2 - 1404a = 123.21 m^2/s^2
v_f^2 = 123.21 m^2/s^2 + 1404a
v_f = sqrt(123.21 m^2/s^2 + 1404a)

Als nächstes müssen wir die Zeit berechnen, die der Wanderfalke benötigt hat, um von einer Höhe von 372 m auf eine Höhe von 38 m zu fallen. Wir können die kinematische Gleichung verwenden:

d = v_it + 0.5a*t^2

wobei d die Höhendifferenz, v_i die Anfangsgeschwindigkeit, a die mittlere Beschleunigung und t die Zeit ist. Da die Anfangsgeschwindigkeit des Wanderfalken Null ist, vereinfacht sich die Gleichung zu:

d = 0.5at^2

Wir setzen die Werte ein und lösen nach t auf:

334 m = 0.5a(16 s)^2 334 m = 128a a = 2.61 m/s^2

Schließlich können wir die mittlere Beschleunigung des Wanderfalken während des Sturzfluges berechnen, indem wir v_f und v_i sowie die Zeit, die der Wanderfalke benötigt hat, um von 372 m auf 38 m zu fallen, kennen:

a = (v_f - v_i) / t
a = (sqrt(123.21 m^2/s^2 + 1404a) - 11.11 m/s) / 16 s
a = (sqrt(123.21 m^2/s^2 + 1404*2.61 m/s^2) - 11.11 m/s) / 16 s
a = 9.81 m/s^2

Die mittlere Beschleunigung des Wanderfalken während seines Sturzfluges beträgt 9.81 m/s^2, was der Beschleunigung aufgrund der Schwerkraft entspricht.

Bild zum Beitrag
Bewegung, Schule, Mathematik, Geschwindigkeit, rechnen, Beschleunigung, Formel, Physik, Kinematik

Meistgelesene Beiträge zum Thema Formel