Analytische Geometrie – die neusten Beiträge

Tennisspiel Aufgabe Analytische Geometrie?

Aufgabe:

Die Abbildung stellt in einem dreidimensionalen Koordinatensystem schematisch das Spielfeld (Einzelfeld) eines Tennisplatzes dar. Das Feld wird in der Mitte durch ein Netz unterteilt, das von den Außenpfosten AB und EF gehalten wird. Die Netzoberkante ist in der Mitte im Punkt D niedriger als außen in den Punkten B und F, aber ansonsten geradlinig gespannt. Die angegebenen Maße des Platzes sind aus Vereinfachungsgründen auf ganze Meter gerundet. Auch die Koordinaten der unten Angegebenen Punkte sind in Metern zu verstehen.

Die Bälle fliegen in diesem Modell geradlinig, es sollen jegliche Spins vernachlässigt werden. Außerdem wird der Tennisball als Punkt aufgefasst.

Die angegebenen Punkte des Tennisfelds haben die folgenden Koordinaten:

A(0|12|0) B(0|12|1,1) C(4,5|12|0) D(4,5|12|0,9) E(9|12|0) F(9|12|1,1) P(4,5|6|0) Q(9|6|0)

Im Punkt (4|24|0) steht der Aufschläger, der versucht den Tennisball vom Punkt H(4|24|3) seines Schlägers aus geradlinig in den Eckpunkt P des gegnerischen Aufschlagfeldes ECPQ zu schlagen.

Dem Aufschläger gelingt es, seinen Aufschlag genau in dem Punkt P zu platzieren. Von dort aus springt der Ball idealtypisch, wie in der Abbildung 2 dargestellt wird, ab in Richtung des Gegners, der auf der Grundlinie (der x1-Achse) steht.

Bestimmen Sie denjenigen Punkt S der x1x3.Ebene, in dem der Schläger des Gegners den Ball zum

Ich habe das Ergebnis (4,6|0|1), aber wie ich es berechnet habe war viel zu einfach.

Wie würdet ihr die Aufgabe bearbeiten (vllt Lotfußpunkt berechnen ist das möglich?)

Bild zum Beitrag
Schule, Mathematik, analytische Geometrie, Vektoren

Lineare Abhängigkeit bei Vektoren, stehe auf dem Schlauch?

in der Schule haben wir besprochen, dass, wenn die Vektoren linear abhängig sind, gilt: (Vektor 1)= r*(Vektor 2) +s*(Vektor 3)

weil ich das Thema aber nicht so sehr verstehe, habe ich auch danach gegoogelt, und da steht plötzlich überall stattdessen

R*(Vektor 1)+s*(Vektor 2)+t*(Vektor 3)=0

also wir machen das auch mit den linearen Gleichungssystemen aus 3 Gleichungen, allerdings immer mit der oberen Formel, und von der unteren hatte ich noch nie was gehört.

-Wie ist das denn jetzt, bzw welche Formel ist richtig? :(

-Also generell verstehe ich auch nicht richtig den Unterschied, was eine Linearkombination ist, und was Linear abhängig? :O

Zur Info, gauß-algorithmus hatten wir auch nicht.

Und noch mal zur Formel, damit berechnet man ja, ob die Vektoren linear unabhängig oder abhängig sind.

-Aber wie ist das z.b., wenn nur zwei davon linear abhängig sind, weil da ja manchmal z.b. steht " zeichnen Sie die Repräsentanten Dreier Vektoren, von denen zwei linear unabhängig, alle drei aber linear abhängig sind"? Gibt es da wohl Unterschiede, das es bei allen Vektoren anders ist als bei einzelnen??

Sorry für diese sehr lange Frage, hatte in diesem Thema von vorneherein Schwierigkeiten, und versuche gerade, alles durchzugehen und es so gut wie möglich zu verstehen, was aber irgendwie nicht gerade gelingt.

Zur Info, die grundlegenden Fragen sind mit einem Bindestrich Markiert. Bin dankbar um jede Antwort! :D

Schule, Mathematik, analytische Geometrie, Geometrie, Vektoren, Vektorrechnung, Mathe Oberstufe

Meistgelesene Beiträge zum Thema Analytische Geometrie