Stochastik – die neusten Beiträge

Vollständige Induktion 2?

Vollständige Induktion,

Hallo,

Ich habe mich wieder mit dem Prinzip der vollständigen Induktion befasst und habe folgenden Denkfehler: Am Anfang gibt es ja eine Behauptung, die man durch das Einsetzen einer Zahl beweist. Das bedeutet ja, dass man ab diesem Moment sagt, dass die Gleichung XY für eine bestimmte Variable (natürliche Zahl) gilt. Sagen wir Mal, die Voraussetzung ist, dass es beispielsweise für n 1 gilt. Dann setzt man für n, (n + 1) ein und beweist hiermit unter der Voraussetzung, dass die Gleichung für n=1 erfüllbar war, dass die Gleichung auch für den Nachfolger, also zwei erfüllbar ist.

Ab hier habe ich eine Frage: Üblicherweise hört man ja hier auf (die Annahme, dass es für alle natürlichen Zahlen gilt, ist bewiesen). Liegt es hierbei daran, dass wenn man zeigt (durch Umformungen etc), dass man n+1 auf der „anderen“ Seite rekonstruieren kann, dass auch n+2, also auch n+3 n+4 ..-…. rekonstruierbar ist? Oder wie versteht man das? Würde das also auch bedeuten, dass wenn ich (n-1) beweise, dass auch (n-2..) gilt?

Zudem: Verstehe ich das richtig, dass die vollständige Induktion also einer Art Beweissatz ist, der die „Gültigkeit“ einer Lösungsmenge darlegt?

Gibt es eine Möglichkeit nur mit der vollständigen Induktion zu beweisen, für welche Zahlenmengen eine Gleichung gilt (also ohne davor eine Voraussetzung zu haben, dass beispielsweise Gleichung XY für alle natürlichen Zahlen gilt)?

rechnen, Funktion, Formel, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Stochastik, Mengenlehre, Beweis, diskrete Mathematik, Grenzwert, Zahlenfolgen, Analysis 1, Analysis

Habe ich diese Aufgaben zu bedingter Wahrscheinlichkeit richtig bearbeitet?

1. Aufgabe: Wahrscheinlichkeitsmodelle und Bayessche Statistik (20 Punkte)

In einem Experiment gibt es zwei Typen von Maschinen, die Produkte herstellen:

Maschine 1 produziert 60% der Gesamtmenge an Produkten und hat eine Defektquote von 5%.

Maschine 2 produziert 40% der Gesamtmenge an Produkten und hat eine Defektquote von 10%.

Wenn ein Produkt als defekt getestet wird, berechne die Wahrscheinlichkeit, dass es von Maschine 1 stammt.

2. Aufgabe: Fortgeschrittene Anwendungen des Satzes von Bayes (30 Punkte)

Eine Stadt hat zwei Arten von Wohnungen:

70% der Wohnungen sind neu renoviert und 30% sind alt.

80% der renovierten Wohnungen haben eine Klimaanlage, während 20% der alten Wohnungen eine Klimaanlage haben.

Wenn eine Wohnung zufällig ausgewählt wird und es bekannt ist, dass sie eine Klimaanlage hat, berechne die Wahrscheinlichkeit, dass die Wohnung neu renoviert ist.

3. Aufgabe: Kombinierte bedingte Wahrscheinlichkeiten (30 Punkte)

Ein Medikament wird auf zwei Patientengruppen getestet:

Gruppe A besteht aus 100 Patienten, von denen 30 an einer Krankheit leiden. Die Wahrscheinlichkeit, dass das Medikament bei einem kranken Patienten wirkt, beträgt 90%, während die Wahrscheinlichkeit, dass es bei einem gesunden Patienten wirkt, 10% beträgt.

Gruppe B besteht aus 150 Patienten, von denen 50 an der Krankheit leiden. Die Wahrscheinlichkeit, dass das Medikament bei einem kranken Patienten wirkt, beträgt 80%, während die Wahrscheinlichkeit, dass es bei einem gesunden Patienten wirkt, 20% beträgt.

Wenn ein zufällig ausgewählter Patient aus Gruppe A oder B an der Krankheit leidet und das Medikament wirkt, berechne die Wahrscheinlichkeit, dass dieser Patient aus Gruppe B stammt.

4. Aufgabe: Verborgene Zustände und bedingte Wahrscheinlichkeiten (20 Punkte)

In einem Casino gibt es zwei Spielautomaten:

Automat 1 gibt bei 20% der Spiele einen Gewinn aus.

Automat 2 gibt bei 10% der Spiele einen Gewinn aus.

Der Casino-Besucher spielt ein Spiel und gewinnt. Die Wahrscheinlichkeit, dass er Automat 1 benutzt hat, beträgt 70%. Bestimme die Wahrscheinlichkeit, dass der Spieler Automat 2 benutzt hat, wenn er gewonnen hat.

5. Aufgabe: Zeitabhängige Wahrscheinlichkeiten und bedingte Wahrscheinlichkeiten (20 Punkte)

Ein Unternehmen hat zwei Produktionslinien:

Produktionslinie 1 produziert 40% der Gesamtmenge und hat eine Fehlerrate von 2% für ein bestimmtes Produkt.

Produktionslinie 2 produziert 60% der Gesamtmenge und hat eine Fehlerrate von 5% für dasselbe Produkt.

Wenn ein Produkt aus der gesamten Produktion zufällig ausgewählt wird und einen Fehler aufweist, berechne die Wahrscheinlichkeit, dass es von Produktionslinie 1 stammt.

Sind meine Ergebnisse so alle richtig?

Bild zum Beitrag
Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm

Weg zum KI-Ingenieur?

Hallo liebe Comunity,

ich gehe im Moment noch in die Schule, könnte mir aber vorstellen zukünftig etwas im Bereich des maschinellen Lernens zu machen. Deswegen würde ich gerne jetzt schon einen Grundstein dafür legen. Ich habe mich aber gefragt, wie man da am besten einsteigen könnte. Mein Plan war es jetzt, erst mal meine mathematischen Kentnisse aufzufrischen und den Schulstoff der letzen Jahre Mathe zu wiederholen. Darauf aufbauend wollte ich dann in die höhere Mathematik einsteigen und mich mit linearer Algebra, Stochastik & Statistik befassen.

Danach würde ich dann beginnen mir das Programmieren beizubringen. In Python kenne ich mich schon ein bisschen aus, aber ich würde mein Können als definitiv ausbaufähig beschreiben.

Als letzen Schritt würde ich mich dann mit KI-spezifischen Themen auseinandersetzen. Da hab ich mir jedoch noch nichts genaueres überlegt. Wahrscheinlich beständer der Teil dann darin, die Struktur von neuronalen Netzen tiefer zu durchblicken, mit KI-Frameworks zu experimentieren und verschiedene Trainingsmethoden auszuprobieren (Supervised learning, Reinforcment learning, etc.)

Aber ich bin halt echt alles andere als Experte in diesem Bereich (das will ich ja erst noch werden in Zukunft). Deswegen bitte ich darum, mögliche Fehler in meiner Nachricht zu entschuldigen.

Jetzt zu meiner Frage an alle, die sich mit KI auskennen, selber in diesem Bereich tätig sind oder sich auf dem Weg dahin befinden.

Was haltet ihr von meinem Plan. Würdet ihr anders vorgehen? habe ich irgendetwas wichtiges vergessen? Würdet ihr das Erlernen dieser Fähigkeiten anders strukturieren?

Über eine simple Bewertung und ein paar Ratschläge würde ich mich sehr freuen.

Viele Grüße und noch einen schönen Sonntag :)

Mathematik, Framework, Informatik, künstliche Intelligenz, lineare Algebra, Statistik, Stochastik, Machine Learning, Data Science

Kann mir jemand bei den 2 Aufgaben helfen?

Moinsen ihr Lieben,

Unzwar hänge ich leider seit fast 2 Stunden an diesen beiden Aufgaben und weiß einfach nicht weiter. Könnte mir jemand die Aufgaben erklären und mich in den Rechenweg einleiten?

Wäre sehr nett von euch. 

Mit freundlichen Grüßen

Mario

Aufgabe 1: Stochastik

Bei einem Glückspiel wird ein normaler Würfel eingesetzt. Ein Spiel kostet einen Einsatz von 1 Euro. Wenn eine 6 gewürfelt wird erhält man 3 Euro. Wenn eine 2 oder eine 4 gewürfelt wird gibt es immerhin noch 1,50 Euro.

a) Begründen Sie, ob es sich um ein faires Spiel handelt.

b) Wie müsste der Einsatz verändert werden, damit der Spieler statistisch ge- sehen bei 10-maligem Spielen einen Gewinn von 8 Euro macht?

Ein normaler 6-seitiger Würfel, der fair und nicht gezinkt

ist weist für das Würfeln einer 6 eine Wahrscheinlichkeitsverteilung auf.

c) Stellen Sie die Verteilung mit einem Histogramm für 50 Würfe graphisch dar und berechnen Sie die folgenden Aufgaben:

• Mit welcher Wahrscheinlichkeit wirft man genau 6 Mal eine 6?

• Mit welcher Wahrscheinlichkeit wirft man mindestens

4 und höchstens 12 Mal eine 6?

• Mit welcher Wahrscheinlichkeit wirft man weniger als 8 Mal keine 6?

Dei Binomialverteilung wird häufig durch die Normalverteilung approximiert.

d) Erläutern Sie, was mi Gegensatz zur Binomialverteilung unter einer Nor- malverteilung verstanden wird und machen Sie die Unterschiede deutlich.

e) Ist die Normalverteilung als Approximation ni der oben genannten Situa- tion anwendbar? Begründen Sie rechnerisch und graphisch.

Aufgabe 2: Analysis

Bei der Normalverteilung spielt die sogenannte Gauß'sche p-Funktion

(Xー1)3

4u,о (x) =

e

202 eine zentrale Rolle.

0 • V 2 7t

Es wird 100 Mal gewürfelt. Als Treffer gilt nach wie vor die 6.

a) Bestimmen Sie Quo für genau 15 Trefer und vergleichen Sie diesen Wert mit P(X=15) im Rahmen der Binomialverteilung.

b) Lösen Sie die Gleichung Quo (x) = 0,02 und interpretieren Sie das Ergebnis.

c) Berechnen Sie

die Wendestellen dieser Funktion.

d) Welche besondere Bedeutung haben die Wendestellen für die Berechnung

von Intervallwahrscheinlichkeiten? Interpretieren Sie ihre Ergebnisse auch im Sachkontext der Aufgabe.

Mathematik, Stochastik, Analysis

Meistgelesene Beiträge zum Thema Stochastik