Quantenphysik/ Photonen / Photoeffekt?

Quantenphysik

Ich stehe vor folgender Aufgabe. Bei der b habe ich gar keine Idee. Ansonsten habe ich die Aufgaben gelöst, allerdings weiß ich nicht, ob sie stimmen

Aufgabe: UV-Licht der Wellenlänge λ=300 nm tri􏰃 auf eine Cäsiumschicht, deren Fläche A=1cm2 beträgt. Die Stärke der Bestrahlung beträgt 2,0 W/cmhoch2.

a) Berechnen Sie die Energie eines Photons.

Hier habe ich Eph= 6,62 *10hoch-19 J raus

b) Bestimmen Sie die Anzahl der Photonen, die jede Sekunde auf die bestrahlte Fläche auftreffen.

Hier habe ich erhlichgesagt keinen Ansatz . Eine Erkläreung mit Formel wäre sehr hilfreich. Ich bitte um einen verständlichen Rechenweg Danke:)

c) Berechnen Sie die maximale kinetsche Energie, die ein durch die Strahlung herausgelöstes Elektron besitzt. Geben Sie die Energie in J und in eV an.

also ich weiß, dass Ekin= h*f - Wa (Wa ist die Ausstritsarbeit und also fg*h)

da es sich um Cäsium handelt ist Wa ja bekannt (1,9eV Formelsammlung) und die Energie des Photons habe ich in Aufgabenteil a) bereits emittelt

Meine Rechnung : Ekin= 6,62*10hoch-19 J -1,9eV = 3,576*10hoch Minus 19 Joule.

ist das richtig?

d) Ermitteln Sie die maximale Gegenspannung, die das Elektron überwinden könnte.

Wahrscheinlich stimmt es nicht. Mein Ansatz: ich weiß aus c) die maximale kinetische Energie meines Photons (fall c stimmt)

Ekin= e* U EkinMAX= ->= 3,576*10hoch Minus 19 Joule. U= EkinMax/e =2,232 Volt ist das richtig?

Energie, Licht, Spannung, Formel, kinetische Energie, Physik, Physiker, Quantenphysik, Volt, Elektronen, Photoeffekt, Photonen, Wellenlänge
Allgemeine Fragen zur Physik?

Hallo,

Ich habe viele Fragen zu Physik. Ich nummerieren sie durch, damit es übersichtlicher ist.

Licht:

Die grundlegende Frage ist, wie ich mir Licht bzw. elektromagnetische Wellen vorstellen kann.

1. Wir haben alle schonmal von "Lichtstrahlen" gehört. Aber ein Strahl ist gerade. Diese Aussage widerspricht ja, dass Licht aus Wellen besteht. Wie kann das sein?

2. Apropos Wellen: wir haben gelernt, dass Wellen aus vielen Oszillatoren bestehen, die miteinander gekoppelt sind. Bei Licht ist das ja nicht so, da gibt es nur die Photonen.

3. Stichwort Photonen: Wie kann ich mir Photonen vorstellen? Man hört immer, dass sie aus Energie bestehen, aber so ganz darunter kann ich mir nichts vorstellen.

Quantenmechanik:

4. Wie kann Quantenverschränkung überhaupt funktionieren? Ich habe immer gehört, dass nichts schneller als Licht sein kann, auch keine Informationsübertragung. Aber bei der Quantenverschränkung ist das doch der Fall, oder? Ich meine, wenn zwei Personen ganz weit voneinander entfernt stehen, auf zwei Teilchen schauen, die miteinander verschränkt sind und einer der beiden das Teilchen verändert, weiß der andere sofort, dass sich da was getan hat. Eine Information wurde übertragen. Oder verstehe ich da was falsch?

Energie, Licht, Wellen, Strahlung, Atom, Lichtgeschwindigkeit, Optik, Physiker, Quantenmechanik, Quantenphysik, Relativitätstheorie, spin, elektromagnetische Wellen, Elektromagnetismus, Photonen, Wellenlänge
Wie funkieren Infrarot Filter durch Absorption?

Wenn IR Strahlung durch die Moleküle in einem solchen Filter absorbiert wurde, dann wird die Energie in Thermische Energie umgewandelt. Gleichzeitig wird im thermischen Gleichgewicht nun Schwarzkörperstrahlung abgegeben, die größtenteils bei Raumtemperatur im IR Bereich liegt.

Wie also kann zB. ein IR Absorptionsfilter in einer Brille das Auge schützen, wenn der Filter die IR Strahlung direkt wieder selber emittiert?

Praktisch kann ich mir bloß vorstellen, dass die Thermische Energie statt durch Wärmestrahlung schneller durch Konvektion und Wärmeleitung in die umgebende Luft abgegeben wird.

Follow up Frage:

Generell hinterfrage ich momentan auch den Unterschied zwischen Absorbern und Reflektoren auf der Wechselwirkungsebene zwischen Licht und Materie:

  • Ein Absorber kann durch seine spezifischen Eigenschaften Photonen bestimmter Energien absorbieren, was zu einem zu Temperaturerhöhung führt (Translation, Rotation, Vibration) und bei Passender Energie zu angeregten Elektronenzuständen. Die thermische Energie wird durch schwarzkörperstrahlung abgegeben, die angeregten Elektronenzustände fallen wieder zurück und emittieren ein Photon mit gleicher Energie?
  • Bei einem Reflektor bin ich mir noch unsicherer, manche behaupten, dass ein Reflektor direkt so absorbiert, dass nichts in thermische Energie umgewandelt wird, sondern direkt ein Elektron angeregt wird und durch das sofortige zurückfallen ein Photon mit gleicher Energie emittiert wird (zum Beispiel durch verbotene energiezustände im Energieband von Kristallstrukturen). Doch das erklärt beispielsweise nicht, warum beim zurückfallen in den Grundzustand ein Photon in die Richtung emittiert wird, die dem Reflektionsgesetz folgt. Andere behaupten, dass bei Betrachtung von reflektionserscheinungen besser die Wellenvorstellung benutzt werden sollte und beim reflektieren nichts absorbiert und wieder emittiert wird, in dem Sinne wäre ein Absorber ja eigentlich dann auch bloß ein Reflektor.
Energie, Chemie, Licht, Wärme, Astrophysik, Atom, Atomphysik, Formel, Lichtgeschwindigkeit, Physik, Physiker, Quantenmechanik, Quantenphysik, Relativitätstheorie, Thermodynamik, Elektromagnetismus, Elektronen, Photonen, Wellenlänge
Verschränkung von Photonen: Wie mit Polarisationsfiltern beweisen?

Es heißt, wenn der Laserstrahl durch einen speziellen doppelbrechenden Kristall (wie im Bild) geht, dass zwei Strahlen mit verschränkten Photonen erzeugt werden.
Wie soll das jetzt bewiesen werden, dass wenn man die Photonen des einen Strahls polarisiert die Photonen des anderen Strahls senkrecht polarisiert werden?
Denn die Wahrscheinlichkeit von Photonen beider Strahlen horizontal oder vertikal polarisiert zu sein ist 50%. Bei beiden Strahlen gibt es 50% horizontal und 50% vertikal polarisierte Photonen.


Wird Strahl 1 nun durch einen vertikal polarisierenden Polarisationsfilter geschickt, ist die Wahrscheinlichkeit dass ein Photon durchgeht 50%, weil es 50% vertikal polarisierte Photonen gibt.
Wird Strahl 2 auch durch einen Polarisationsfilter geschickt, gehen ebenfalls 50% der Photonen durch, egal ob es ein vertikal oder horizontal polarisierender Polarisationsfilter ist.


Wie lässt sich mit Polarisationsfiltern beweisen, dass eine Polarisation von Strahl 1 eine dazu senkrechte Polarisation von Strahl 2 bewirkt?
Es gehen immer 50% der Photonen durch. Dass eine Polarisation von Strahl 2 ausgelöst wird durch Strahl 1, ist nicht erkennbar, es gehen in jedem Fall 50% der Photonen durch. Oder gibt es einen Denkfehler? Oder ist das anders als oben beschrieben?

Wie wichtig ist dabei die Entfernung der Polarisationsfilter: macht es einen Unterschied, wenn ein Filter näher am Kristall steht, sodass die Photonen des einen Strahls auf diesen früher ankommen? Zb wenn die Polarisationsfilter wie im Bild in die gleiche Richtung polarisieren

Bild zu Frage
Energie, Chemie, Licht, Wissenschaft, Atom, Atomphysik, Lichtgeschwindigkeit, Physik, Quantenphysik, Photonen, Wellenlänge

Meistgelesene Fragen zum Thema Photonen