Zahlen – die neusten Beiträge

Vollständige Induktion Mathe?

Hey,

ich habe selten etwas in der Mathematik getroffen, das mich so begeistert, beziehungsweise meine Interesse geweckt hat. Ich habe mich nun etwas eingelesen und habe viele kleine Verständnisfragen.

Wie ich es verstanden habe, gibt es eine Gleichung, beziehungsweise eine Voraussetzung, die für bestimmte x Werte definiert ist. Zu aller erst zeigt man das Erfüllen dieser Bedingung, indem man den klein möglichsten X-Wert einsetzt. Hierzu erstmal eine Frage: Warum wäre es beispielsweise unpraktisch, den nicht kleinsten X-Wert zu wählen? Hat das was mit dem Einsetzen der erst bestimmten Voraussetzung im Induktionsschritt zu tun? Verstehe ich richtig, dass das Induktionsverfahren quasi dazu da ist, um eine Aussage für eine bestimmte Lösungsmenge endgültig zu beweisen (man lässt die Variable quasi gegen unendlich laufen). Dann habe ich eine vielleicht verrücktes Gedankenexperiment, beziehungsweise Frage:

Wenn man sagt, x(2) ist größer als x für alle X-Werte größer als 1 und die Voraussetzung für x =3 beweist (durch einsetzen), dann zeigt man ja anhand eines spezifischen Beispiels, dass die Voraussetzung erfüllt ist. Sagen wir Mal, ich nehme nun den Ansatz x+1, wobei ich für x 2 festlege und den Ausdruck (x+1) als x´ bezeichne. Darauf folgt ja, dass x´=x ist. Wie ich verstanden habe, gilt, wenn ich x+1 verwende und dabei die obrige Bedingungen erfülle, dass die Aussage allgemeingültig, sprich für alle X Werte zulässig ist. Wenn ich mich jedoch nur auf einen spezifischen Fall beziehe, dann ist das ja nicht allgemeingültig. Wieso aber, wenn der spezifische Fall (x) der allgemeinen Aussage gleicht (x´).

Ich könnte ja immer die X Werte so bestimmen, dass eine Voraussetzung wie x=x´eingehalten wird. Es ist so schwer meine Frage gut zu präzisieren, aber wieso erfüllt quasi x+1 eine allgemeine Aussage, aber x alleine nicht.

Ich habe außerdem gehört, dass die Induktion wie einem Dominospiel gleicht. Wenn n geht, dann geht auch n+1, wenn n´= (n+1) gilt, dann gilt auch n´+1. Verstehe ich das richtig?

Wozu verwendet man dieses Verfahren außerdem noch? Einfach nur, um Aussagen zu beweisen?

Ich hoffe, ich konnte meine Frage einigermaßen verständlich stellen, sehr interessantes Thema und danke für jegliche Hilfe!

Mathematik, Zahlen, Induktion, Physik

Warum beweist Cantors Diagonalargument die nicht vorhandene Bijektion?

Georg Cantor hat bewiesen, dass die Menge der reellen Zahlen im Intervall [0;1] nicht bijektiv zur Menge aller natürlichen Zahlen ist. Dies tat er durch sein Diagonalargument. (Ich weiß grad nicht mehr, ob das erste oder zweite.)

Aaaaber ich verstehe nicht, warum keine Bijektion herrscht, nur weil die Liste nie vollständig ist. Denn lediglich das zeigt Cantors Argument.

Eine Liste von unendlichen Zahlen, ist ja sowieso niemals vollständig.

Nur weil bewiesen werden kann, dass die Liste nicht vollständig ist, heißt das nicht, dass es keine eineindeutige Zuordnung der Elemente geben kann. Oder etwa doch? Aber warum?!

Bei den geraden Zahlen geht das ja auch, obwohl man immer wieder eine neue Zahl erschaffen kann. (Die letzte +2)

Warum darf er überhaupt seine These auf unendlich lange Zahlen machen? Man kann doch nicht alles einfach in die Unendlichkeit übertragen. Sein Argument ergibt ja einigermaßen Sinn, aber doch nicht für unendlich lange Zahlen, die ja aber damit erschaffen werden!

Ich verstehe echt nicht den Zusammenhang zwischen einer immer unvollständigen Liste einer Menge und ihrer Bijektion und warum sein Argument für unendliche Längen überhaupt erlaubt ist.

rechnen, Zahlen, Funktion, Algebra, Gleichungen, höhere Mathematik, lineare Algebra, Logik, Mathematiker, Pi, Unendlichkeit, Mengenlehre, Beweis, Funktionsgleichung, Grenzwert, komplexe Zahlen, reelle Zahlen, Analysis

Wie kann man Tree(3) mit Potenztürmen herleiten?

Seaaaaaas again.

Gibt es eigentlich Youtube Videos von so mind. Große Zahlen wie Tree(3) auf Deutsch?

Kann man diese mit Potenztürmen herleiten, ohne diese komplizierten Baum Diagramme zu berechnen? Weil würde gerne wissen, wie groß in

Wirklichkeit Tree(3) ist, aber zuerst mal G64! - zunächst mal so:

G1 (Little Graham): leitet man ja so her oder schaut so aus 3↑↑↑↑3 - bzw Hexation also 7,6 Billionen mal↑↑↑↑......↑↑³3 also 7,6 Bl. Mal 3 Potenztürme nach links, ergibt ja 7,6 Bl Potenztürme nach Rechts - heißt alles 7,6 Bl. Mal. Schon die Zahl sprängt unser Vorstellungsvermögen.

So u das ganze Gespinne hier macht man ja bis G64 also 58 mal diese Hexation (Weil Hexation ist ja die 6th Stelle). Was ist die 64. Stelle? Denn nach Hexation kommt ja irgendwann Nonation, Octation etc...... Wie gehts weiter, weißt das jemand? U kann man so Grahams Zahl herleiten, geschweige denn Tree(3) mit diesen Hyperpotenztürmen?

Angenommen, wieviele Hexationen bräuchte man für Tree(3), sicherlich so G64↑↑↑↑↑↑↑↑↑↑..G64...↑↑↑↑↑G64/G64 Mal oder noch mehr? 😅

Weil man sagt ja G64 (1 Graham), ist hingegen Tree(3) NULL. Unglaublich. Schon G1 ist übertrieben enorm groß.

Kann mir da wer weiterhelfen?

Will es einfach nur wissen. Aber ja, das weiß leider fast niemand, nicht mal Steven Hawking oder die genialsten Wissenschaftler, oder?

Bild zum Beitrag
Zahlen, Funktion, Potenzen, Analysis

Eltern behandeln uns nicht gleich?

Hey,

es geht darum dass ich echt gerne die Kids Escola bei dem Oliviera stables machen würde. Die Besitzerin meiner Reitbeteiligung würde mir sogar erlauben ihn mitzunehmen 😍😍😍

Das ganze findet immer in zwei Tages Blöcken statt und eig glaube ich nur am WE. Das ist a nicht so das Problem.
Da ist das finannzielle eher das Problem.

Und das obwohl meine Eltern früher für meine sis einmal im Monat für ein WE (Eishockey) 600€ und mehr gezahlt haben. Sie hat genau 0€ dazu gegeben und ich würde mein ganzes Geld dazugegeben!!!

Meine Eltern meinen immer so wir schauen mal aber das heißt bei denen immer ne, kann die kleine vergessen, wir müssen nur noch schauen, wie wir ihr das erklären.

Noch dazu kommt, ist das wenn ich dort dann mal arbeite ich 80€/stunde bekommen würde und ihnen somit ziemlich sicher das ganze Geld zurück geben kann!!!!

Wie kann ich Menschen, die nix mit dem Pferdesport zu tun haben, erklären wie sehr ich mir das wünsche?! Und wie kann ich sie dazu bringen, das sie es mir zahlen?

Und an alle OS kritiker, geht mal hin ohne vorgefertigte Meinung, stellt Fragen aber denkt nicht immer ne, ist anders als “normal” und damit schlecht. Immer wenn Manuel Jorge de Oliviera da ist, kostet es zwar was, aber wenn er nicht da ist, dann nicht! Und man kann immer vorbei kommen!

An alle anderen die nix mit dem Pferdesport zu tun haben, wir bei den OS bzw der vertikalen Reitweise lassen das Pferd in der natürlichen Aufrichtung laufen und gymnastizieren das Pferd so, das es uns eben auch mal auf entspannten Ausritten problemlos tragen kann. Und in der restlichen Arbeit wird halt das dann aufgebaut und weiter gefördert. Aber ohne den Kopf vom Pferd irgendwie runter zu arbeiten.

Liebe, Arbeit, Kinder, Pferd, Mutter, Geld, Angst, Beziehung, Vater, Zahlen, Eltern, Psychologie, bezahlen, Familienprobleme, Partnerschaft, Psyche, Streit

Meistgelesene Beiträge zum Thema Zahlen