Bernoulli – die besten Beiträge

Wahrscheinlichkeit beim Ziehen mit Zurücklegen - zwei mögliche Ansätze (Urnenmodell)?

Die gegebene Aufgabe ist: Eine Urne ist mit q schwarzen und r roten Kugeln befüllt. Es wird mit Zurücklegen und ohne Berücksichtigung der Reihenfolge gezogen.

Wie hoch ist die Wahrscheinlichkeit, beim Ziehen von l+m Kugeln genau l schwarze und m rote Kugeln zu ziehen?

Mein 1. Ansatz:

Einführen einer Zufallsgröße X, die die schwarzen gezogenen Kugeln zählt und binomialverteilt ist mit n = q+r und p = l/(q+r). Die gesuchte Wahrscheinlichkeit ist nun P(X=l). Ist dieser Ansatz so korrekt?

Mein 2. Ansatz:

Prinzipiell kann man ja auch damit arbeiten, dass bei Laplace Experimenten die Wahrscheinlichkeit berechnet werden kann, indem man die Anzahl an günstigen Ergebnissen durch die Anzahl an insgesamt möglichen Ergebnissen teilt.

Es gibt insgesamt (q+r)^(l+m) / (l+m)! Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge).

Es gibt (q)^(l) / l! Möglichkeiten, aus q Kugeln genau l Kugeln auszuwählen. Und es gibt (r)^(m) / m! Möglichkeiten, aus r Kugeln genau m Kugeln auszuwählen. Folglich gibt es ((q)^(l) / l!) * ((r)^(m) / m!) Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen (mit Zurücklegen und ohne Berücksichtigung der Reihenfolge. Die Terme sind analog zum Fall ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge aufgestellt).

D.h. die gesuchte Wahrscheinlichkeit lässt sich auch als

(Möglichkeiten, aus q+r Kugeln genau l+m Kugeln auszuwählen)/(Möglichkeiten, aus q schwarzen Kugeln genau l schwarze Kugeln und gleichzeitig aus r roten Kugeln genau m rote Kugeln auszuwählen)

= ( (q+r)^(l+m) / (l+m)!) /
((q)^(l) / l!) * ((r)^(m) / m!) ) ausdrücken, oder?

Ist das so korrekt, oder sind mir irgendwo Fehler unterlaufen? Sind beide Ansätze zulässig?

Schule, Mathematik, rechnen, Gleichungen, Gymnasium, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm, Bernoulli, Binomialverteilung, Erwartungswert, Kombinatorik, Rechenweg

Alternativtest Hypothesentest Alpha/Beta Fehler?

Hallo, ich lerne gerade, wie man den alpha und beta fehler berechnet bei einem Alternativtest.

z.B. haben wir n=20, 

Wenn man den Annahme bzw. Ablehnungsbereich von H_0 berechnen will, ergibt sich durch Ausprobieren des kritischen Werts "k", dass k=4 mit p_1=0,4 P=0,0509% ergibt, weil für k=5 schon P=0,1255 ist und die 10% Schwelle von p_0 übersteigen würde.

Wenn ich nun den Alpha fehler berechnen will, muss ich das ja über den Ablehnungsbereich machen. Das heißt, wir haben hier einen Ablehnungsbereich von [5;30] für H_0. Also rechnen wir P(x≥5) mit p_0=0,1 und erhalten 4,3%. Diesen Fehler möchten wir ja in Kauf nehmen aber den Beta Fehler unbedingt vermeiden.

Der beta fehler als Fehler 2. Art ergibt sich wenn wir das ja über den Annahmebereich berechnen also P(x ≤4) mit p_1=0,4 und erhalten 5,1%.

Aber was ist nun, wenn der Ablehnungsbereich von H_0 nicht rechts, sondern links ist? Weil der ist ja hier offensichtlich im rechten Bereich. Wie berechne ich dann Alpha/beta Fehler? Wie gesagt kann man den alpha Fehler ja berechnen, wenn man diesen über den Ablehnungsbereich berechnet. Gilt das dann hier für H_1, weil der Ablehnungsbereich von H_1 auf der rechten Seite ist? Also müssten wir P(x≥5) rechnen mit p_1=0,1

(wenn  )? Oder müssten wir in jeden Fall IMMER ÜBER DEN ABLEHNUNGSBEREICH VON H_0 den alpha fehler rechnen??

rechnen, Funktion, Ableitung, Formel, Gleichungen, höhere Mathematik, Mathematiker, Nullstellen, quadratische Funktion, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Bernoulli, Beweis, Binomialverteilung, Funktionsgleichung, hypothesentest, Analysis

Meistgelesene Beiträge zum Thema Bernoulli