Wahrscheinlichkeitstheorie – die besten Beiträge

Habe ich diese Aufgaben zu bedingter Wahrscheinlichkeit richtig bearbeitet?

1. Aufgabe: Wahrscheinlichkeitsmodelle und Bayessche Statistik (20 Punkte)

In einem Experiment gibt es zwei Typen von Maschinen, die Produkte herstellen:

Maschine 1 produziert 60% der Gesamtmenge an Produkten und hat eine Defektquote von 5%.

Maschine 2 produziert 40% der Gesamtmenge an Produkten und hat eine Defektquote von 10%.

Wenn ein Produkt als defekt getestet wird, berechne die Wahrscheinlichkeit, dass es von Maschine 1 stammt.

2. Aufgabe: Fortgeschrittene Anwendungen des Satzes von Bayes (30 Punkte)

Eine Stadt hat zwei Arten von Wohnungen:

70% der Wohnungen sind neu renoviert und 30% sind alt.

80% der renovierten Wohnungen haben eine Klimaanlage, während 20% der alten Wohnungen eine Klimaanlage haben.

Wenn eine Wohnung zufällig ausgewählt wird und es bekannt ist, dass sie eine Klimaanlage hat, berechne die Wahrscheinlichkeit, dass die Wohnung neu renoviert ist.

3. Aufgabe: Kombinierte bedingte Wahrscheinlichkeiten (30 Punkte)

Ein Medikament wird auf zwei Patientengruppen getestet:

Gruppe A besteht aus 100 Patienten, von denen 30 an einer Krankheit leiden. Die Wahrscheinlichkeit, dass das Medikament bei einem kranken Patienten wirkt, beträgt 90%, während die Wahrscheinlichkeit, dass es bei einem gesunden Patienten wirkt, 10% beträgt.

Gruppe B besteht aus 150 Patienten, von denen 50 an der Krankheit leiden. Die Wahrscheinlichkeit, dass das Medikament bei einem kranken Patienten wirkt, beträgt 80%, während die Wahrscheinlichkeit, dass es bei einem gesunden Patienten wirkt, 20% beträgt.

Wenn ein zufällig ausgewählter Patient aus Gruppe A oder B an der Krankheit leidet und das Medikament wirkt, berechne die Wahrscheinlichkeit, dass dieser Patient aus Gruppe B stammt.

4. Aufgabe: Verborgene Zustände und bedingte Wahrscheinlichkeiten (20 Punkte)

In einem Casino gibt es zwei Spielautomaten:

Automat 1 gibt bei 20% der Spiele einen Gewinn aus.

Automat 2 gibt bei 10% der Spiele einen Gewinn aus.

Der Casino-Besucher spielt ein Spiel und gewinnt. Die Wahrscheinlichkeit, dass er Automat 1 benutzt hat, beträgt 70%. Bestimme die Wahrscheinlichkeit, dass der Spieler Automat 2 benutzt hat, wenn er gewonnen hat.

5. Aufgabe: Zeitabhängige Wahrscheinlichkeiten und bedingte Wahrscheinlichkeiten (20 Punkte)

Ein Unternehmen hat zwei Produktionslinien:

Produktionslinie 1 produziert 40% der Gesamtmenge und hat eine Fehlerrate von 2% für ein bestimmtes Produkt.

Produktionslinie 2 produziert 60% der Gesamtmenge und hat eine Fehlerrate von 5% für dasselbe Produkt.

Wenn ein Produkt aus der gesamten Produktion zufällig ausgewählt wird und einen Fehler aufweist, berechne die Wahrscheinlichkeit, dass es von Produktionslinie 1 stammt.

Sind meine Ergebnisse so alle richtig?

Bild zum Beitrag
Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Baumdiagramm

Kann jemand mathematisch diese Lottoaufgabe lösen?

1.

Spieler A spielt 6 aus 49 nach System und Kreuzt 7 statt 6 Zahlen an + eine Superzahl.

2.

Spieler B kauft sich für das Geld welches Person A für Systemscheime ausgibt, lieber Normale Scheine und kreuzt 6 aus 49 zahlen an + eine Superzahl. Für den Preis, welchen Spieler A ausgibt, kreuzt spieker B also mehrere Kästchen an.

3

Spieler C entwickelt ein neuronales Netz, welches anhand der Daten Aussagen über die Gewinnzahlen trifft. Dabei nimmt er eine Excel Tabelle in der nur die Jackpotzahlen (seit es Lotto gibt) stehen und schaut welche Zahlen und Zahlenkombinationen am häufigsten vorgekommen sind. Beispiel für die Zahl 1: 1, 1 und 2, 1 und 2 und 3 usw. Er weiß noch aus der Schule, dass die Lottozahlen stochastisch unabhängig sind. Trotzdem ist er der Meinung, dass da eine gewisse Abhängigkeit besteht, die von der Geschwindigkeit mit der sich die Urne dreht, Gewicht der einzelnen Kugeln, Lage der einzelnen Kugeln usw. abhängt. Spieler C ist der Meinung, dass es sehr viele Parameter sind, die am Ende das Endergebnis beeinflussen und da es kaum möglich ist alle diese Parameter zu berücksichtigen, hat er sich dazu entschieden ein neuronales Netz zu entwickeln und so vorzugehen als würde es da eine Abhängigkeit in einem sehr chaotischen System geben.

Frage:

Welche Spielstrategie ist die bessere, wenn nicht nur der Jackpot, sondern auch die Gewinnklassen ab 1000 Euro in Betracht gezogen werden sollten?

Begründe es mathematisch mit Wahrscheinlichkeiten und mathematischen Schlussfolgerungen.

LG.

rechnen, Zahlen, Data Mining, Formel, Logik, Lotto, Lottozahlen, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Lottogewinn, Mengenlehre, 6 aus 49, Baumdiagramm, Erwartungswert, Kombinatorik, Rechenweg, Eurojackpot, Analysis, Data Science

Kombinatorik: Welche Verteilung erwartet man beim Ziehen von Kugeln aus einer Urne ohne Zurücklegen?

Ich ziehe aus einer Urne mit N=24 nu­me­rier­ten Ku­geln eine zu­fäl­li­ge Ku­gel, schrei­be mir ihre Num­mer auf, lege sie zu­rück und mache das ins­ge­samt n=10000-mal. Es soll­te also je­de Ku­gel un­ge­fähr 10000/24≈417 mal dran­ge­kom­men sein. Wenn ich das aber prak­tisch mache, dann stelle ich fest, daß die wirk­liche An­zahl ziem­lich stark schwankt, näm­lich zwi­schen 451 und 373. Kann ich dar­aus schlie­ßen, daß die „zu­fäl­lig“ ge­zo­ge­ne Ku­gel doch nicht ganz zu­fäl­lig war, also daß da ir­gend­wo ein Bias für eine be­stimm­te Ku­gel drinsteckt?

In meiner wirklichen Anwendung ist die Urne na­tür­lich ein Pro­gramm, das für einen be­stimm­ten In­put einen von 24 mög­li­chen Out­puts liefert. Mei­ne In­ten­tion beim Pro­gram­mie­ren war, daß alle un­ge­fähr gleich häu­fig auf­tre­ten sollten. Ich ver­ste­he nicht viel von Sta­tis­tik, hätte aber an­ge­nom­men, daß die Streu­ung nur grob √417≈20 be­tra­gen solle. Tat­säch­lich ist sie dop­pelt so groß. Muß ich mir Sor­gen machen?

Die genauen Zahlen sind: 451 449 441 440 434 433 433 426 421 421 419 419 416 410 410 409 406 403 401 400 398 398 389 373.

In einem anderen (und algorithmisch schwierigeren) Fall gibt es 36 Mö­glich­kei­ten, der Er­war­tungs­wert ist also 278, aber die Streu­ung be­trägt sage und schrei­be 373 bis 178.

Wie sieht eigentlich die Wahrscheinlichkeitsverteilung aus? Die Gesamt­zahl der mög­li­chen Er­geb­nis­se bei N Ku­geln und n Zie­hun­gen sollte Nⁿ sein, aber wie vie­le davon ha­ben eine be­lie­bi­ge Kugel genau k-mal ge­zogen? Und selbst wenn ich das aus­rech­nen könn­te, wie hilft mir das, fest­zu­stel­len, ob meine empi­risch er­hal­te­­ne Ver­tei­lung sta­tis­tisch plau­si­bel ist? Gibt es da einen sta­tis­ti­schen Test?

Mathematik, programmieren, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Binomialverteilung, Erwartungswert, Kombinatorik

Meistgelesene Beiträge zum Thema Wahrscheinlichkeitstheorie