Mengenlehre – die besten Beiträge

Wieso ist die Wurzel aus 2 irrational?

Ich habe gerade ein kleines mathematisches Problem und finde meinen Fehler einfach nicht. Deshalb wäre ich dankbar, wenn mir jemand sagen könnte, was an meinen Überlegungen falsch ist.

  1. Die rationalen Zahlen sind definiert als die Menge der Zahlen, die sich durch Brüche aus ganzen Zahlen darstellen lassen.
  2. Die Wurzel aus 2 - um ein Beispiel zu nennen - ist irrational. Aber ich kann die Wurzel aus 2 durchaus als Bruch darstellen. Beispielsweise mit dem Nenner 1.
  3. Diese Darstellung entspricht nicht der Definition von rationalen Zahlen, denn im Zähler befindet sich ein Komma, also keine ganze Zahl.
  4. Ich erweitere den Bruch nun mit 10. So verschiebt sich das Komma um eine Stelle.
  5. Diese Darstellung entspricht nicht der Definition von rationalen Zahlen, denn im Zähler befindet sich ein Komma, also keine ganze Zahl.
  6. Die Definition einer rationalen Zahl sagt aber nicht aus, dass die ganzen Zahlen in Nenner und Zähler endlich sein müssen. Ich kann den Bruch also doch einfach unendlich oft mit 10 erweitern.

Das entspricht doch dann letztendlich einem Bruch, der sowohl im Nenner, als auch im Zähler eine unendlich große ganze Zahl hat.

Wenn ich aber nun sage, seien a und b unendlich große ganze Zahlen, dann ist klar, dass a/b eine rationale Zahl ist.

Wie unterscheidet sich also nun meine Ausführungen von der Wurzel von 2 vom einfach Fall a/b?

Den einzigen Fehler, den ich erahnen könnte, ist der, dass ich selbst dann, wenn ich meinen Bruch unendlich oft erweitere, niemals eine ganze Zahl in den Nenner bekomme. Wenn ich den Bruch aber nun unendlich oft erweitere und anschließend einfach die Nachkommastellen weglassen würde, hätte ich doch einen Bruch aus ganzen Zahlen, der sich der Wurzel aus 2 unendlich genau annähert. Kann ich an der Stelle nicht behaupten, dass mein Bruch einfach gleich der Wurzel 2 ist, so wie man beispielsweise auch sagt, dass 0,99 Periode gleich 1 ist? Und müsste daraus dann nicht folgen, dass die Wurzel aus zwei eine rationale Zahl ist, da es eine rationale Zahl (meinen Bruch) gibt, die sich der Wurzel aus 2 unendlich genau annähert.

Zahlen, Unendlichkeit, Mengenlehre, Zahlenmengen

Kann jemand mathematisch diese Lottoaufgabe lösen?

1.

Spieler A spielt 6 aus 49 nach System und Kreuzt 7 statt 6 Zahlen an + eine Superzahl.

2.

Spieler B kauft sich für das Geld welches Person A für Systemscheime ausgibt, lieber Normale Scheine und kreuzt 6 aus 49 zahlen an + eine Superzahl. Für den Preis, welchen Spieler A ausgibt, kreuzt spieker B also mehrere Kästchen an.

3

Spieler C entwickelt ein neuronales Netz, welches anhand der Daten Aussagen über die Gewinnzahlen trifft. Dabei nimmt er eine Excel Tabelle in der nur die Jackpotzahlen (seit es Lotto gibt) stehen und schaut welche Zahlen und Zahlenkombinationen am häufigsten vorgekommen sind. Beispiel für die Zahl 1: 1, 1 und 2, 1 und 2 und 3 usw. Er weiß noch aus der Schule, dass die Lottozahlen stochastisch unabhängig sind. Trotzdem ist er der Meinung, dass da eine gewisse Abhängigkeit besteht, die von der Geschwindigkeit mit der sich die Urne dreht, Gewicht der einzelnen Kugeln, Lage der einzelnen Kugeln usw. abhängt. Spieler C ist der Meinung, dass es sehr viele Parameter sind, die am Ende das Endergebnis beeinflussen und da es kaum möglich ist alle diese Parameter zu berücksichtigen, hat er sich dazu entschieden ein neuronales Netz zu entwickeln und so vorzugehen als würde es da eine Abhängigkeit in einem sehr chaotischen System geben.

Frage:

Welche Spielstrategie ist die bessere, wenn nicht nur der Jackpot, sondern auch die Gewinnklassen ab 1000 Euro in Betracht gezogen werden sollten?

Begründe es mathematisch mit Wahrscheinlichkeiten und mathematischen Schlussfolgerungen.

LG.

rechnen, Zahlen, Data Mining, Formel, Logik, Lotto, Lottozahlen, Mathematiker, Statistik, Stochastik, Wahrscheinlichkeit, Wahrscheinlichkeitstheorie, Lottogewinn, Mengenlehre, 6 aus 49, Baumdiagramm, Erwartungswert, Kombinatorik, Rechenweg, Eurojackpot, Analysis, Data Science

Meistgelesene Beiträge zum Thema Mengenlehre