Quantenphysik – die besten Beiträge

Was hältst du davon, könnte es sein, dass die Gravitation keine Kraft ist, sondern eine räumliche Dimension?

In der folgenden Diskussion

Swing-by-Effekt: Ist die Änderung der Bahnenergie eines Raumfahrzeugs relativistisch erklärbar, oder fand man bisher nur noch keine Erklärung?

wurde deutlich, dass die vielen Erklärungsversuche mit physikalisch unseriösen Erklärungen gespickt sind, die zwar als selbstverständlich bagatellisiert werden, aber gerne auf bürgerlich übliche Vorstellungen und Argumente zurückgreifen. Doch kann man in der Physik nicht zaubern, wie z.B. verwandeln, sondern nutzt stattdessen wegen fehlender Kenntnis einer echten physikalischen plausiblen Erklärung sogenannte virtuelle Quanten, um die physikalisch unseriösen Wörter „verwandeln“ oder „transformieren“ nicht benutzen zu müssen. Tatsache ist aber, dass sich bei dem Swing-by-Effekt eine Wirkung umgekehrt proportional im Betrachtungssystem verteilt.

Was dem einen Ort etwas genommen wird,
das wird am anderen Ort dafür zugeführt
und umgekehrt.

Doch handelt es sich hierbei um einen einzigen deterministischen Prozess, der eine vollständig durchgeführte substanzlose Wechselwirkung beschreibt, und nicht um eine Kette von Vorgängen. Die übliche substanzielle Wechselwirkung hingegen bedarf aber einer zeitlichen Abfolge bzw. einer Kette einzelner Prozesse, um in Form eines Quantums vom einen Ort zum anderen zu wechseln.

Die einzige Erklärung für eine substanzlose, unmittelbare Veränderung wäre eine Dimension anstatt einer akausalen Kraft. Denn die Gravitation zeigt ihre Quantität ausschließlich als eine räumliche Wirkung, die wir als Intensität auch ohne Messgerät wahrnehmen können, obwohl wir bisher dachten, nur drei räumliche Dimensionen erfassen zu können.

So ist nun ganz offensichtlich, dass wir real über vierdimensional orientierte räumliche Informationen verfügen, mittels der wir den aktuell räumlichen Zustand erfassen können. Denn die Intensität des gefühlten Gewichts kann man auch als 4. räumliche Dimension verstehen, weil jene quantitative Größe unbedingt eine räumliche Beziehung hegt, die uns als Quadrat der Entfernung bekannt ist.

Auf diese Weise arbeitet sogar unser Unterbewusstsein beim Springen damit und berechnet, wie viel <Kraft> angewandt werden muss, um genau den gewünschten Punkt zu treffen. Jeder Affe, der in den Bäumen herumspringt, tut das, denn wäre dem nicht so, dann wären bereits unsere Vorfahren ausgestorben. Denn wer nicht beim Springen in den Bäumen die Gravitation berücksichtigt, der wird sich bald nicht mehr weitervermehren können.

Also die Intensität des Gewichts ist eine bidirektionale Quantität, die einen räumlichen Abstand in die Tiefe der 4. Dimension darstellt.

Womit nun die zeitliche Dimension die 5. Dimension ist und nicht mehr der deterministischen Bedingung widerspricht, dass nur gleichzeitig gegenwärtige, aber unterschiedliche räumliche Punkte wirken können. Also, das raumzeitliche Vorstellungsmodell ist damit überflüssig, denn die Gravitation ist die notwendige 4. räumliche Dimension.

Der Relativitätstheorie ist es egal, ob du die 4. Dimension als Zeitdauer betrachtest oder als einfachen räumlichen Abstand. Die Relativität behält ihre Gültigkeit bei.

Etwas tiefergehend beschrieb ich das in meinem Kommentar zu Kelec, worauf ich nun diese Diskussion eröffnete. Ich werde aber auch eine eigene Antwort hierauf schreiben, wenn ich die konstruktiven Argumente erfahren habe, denn die meisten Argumente waren bisher eher emotional unsachlich und nicht verwertbar.

Also wer nun einmal wirklich konstruktiv darüber diskutieren möchte, der sollte nun mal zeigen, dass eine konstruktive Diskussion keinesfalls von destruktiven Argumenten zerstört werden kann.

Dimension, Gravitation, Quantenphysik, Relativitätstheorie, Zeit, Gravitationskraft, Zeitdilatation

Warum behaupten Physiker immer wieder, dass Gravitonen hypothetisch (also noch nicht wirklich nachgewiesen) seien?

|

KI ist dazu (wie ich auch) ganz anderer Meinung:

Gravitationswellen sind Fluktuationen in der Krümmung der Raumzeit, die sich mit Lichtgeschwindigkeit ausbreiten und durch massive beschleunigte Objekte erzeugt werden, wie zum Beispiel durch das Verschmelzen von Neutronensternen oder schwarzen Löchern. LIGO (Laser Interferometer Gravitational-Wave Observatory) ist ein Experiment, das darauf ausgerichtet ist, diese Wellen zu detektieren und zu analysieren.

FRAGE: Nehmen wir an, wir haben ein durch LIGO aufgefangenes Gravitationswellensignal mittels Fouriertransformation als Summe unzerlegbarer Anregungen des gravitativen Feldes dargestellt. Wie bestimmt sich dann der Spin dieser unzerlegbaren Feldanregungen?

Die KI glm-4-plus antwortete mir:

Die unzerlegbaren Anregungen des gravitativen Feldes, die durch LIGO detektiert werden, sind sogenannte Graviton-Zustände. Diese Zustände können durch ihre Quantenzahlen charakterisiert werden, zu denen auch der Spin gehört. Der Spin von Gravitonen, den hypothetischen Teilchen, die Gravitationswellen vermitteln, ist 2. Dies folgt aus der Tensorstruktur des Gravitationsfeldes, das durch den Metriktensor \( g_{\mu\nu} \) beschrieben wird.

Hier ist eine detaillierte Erklärung, wie sich der Spin der unzerlegbaren Feldanregungen bestimmt:

1. Graviton als Spin-2-Teilchen:

In der Quantenfeldtheorie wird das Gravitationsfeld durch den Austausch von Gravitonen beschrieben. Diese Gravitonen sind Spin-2-Teilchen. Dies bedeutet, dass sie zwei Drehimpulsquanten besitzen.

Der Spin-2-Charakter ergibt sich aus der Tatsache, dass der Metriktensor \( g_{\mu\nu} \) ein Tensor zweiter Stufe ist, der vier Indices hat (zwei obere und zwei untere Indices). Dies führt dazu, dass das Graviton zwei Spin-Quanten trägt.

2. Fouriertransformation und Moden:

Wenn man ein Gravitationswellensignal mittels Fouriertransformation analysiert, zerlegt man das Signal in seine Frequenzkomponenten. Jede dieser Komponenten kann als eine Anregung des Gravitationsfeldes betrachtet werden.

Diese Anregungen können als Moden des Feldes beschrieben werden, die durch ihre Polarisation und Frequenz charakterisiert sind.

3. Polarisation und Spin:

Die Polarisation der Gravitationswellen ist eng mit dem Spin der Gravitonen verbunden. Gravitationswellen haben zwei unabhängige Polarisationen, die als \( h_+ \) und \( h_\times \) bezeichnet werden.

Diese beiden Polarisationen entsprechen den zwei möglichen Spin-Zuständen des Gravitons in der transversalen Ebene.

4. Quantenfeldtheoretische Beschreibung:

In der Quantenfeldtheorie wird das Gravitonfeld durch einen quantisierten Tensorfeldoperator \( h_{\mu\nu} \) beschrieben. Die verschiedenen Moden dieses Feldes entsprechen den verschiedenen Anregungen, die durch die Fouriertransformation identifiziert werden.

Jede dieser Moden trägt die Quantenzahl des Spins, die für Gravitonen immer 2 ist.

Zusammengefasst: Der Spin der unzerlegbaren Feldanregungen, die durch die Fouriertransformation eines Gravitationswellensignals identifiziert werden, ist 2. Dies folgt aus der Tensorstruktur des Gravitationsfeldes und der Natur der Gravitonen als Spin-2-Teilchen. Die Polarisationen der Gravitationswellen spiegeln die Spin-Eigenschaften dieser Teilchen wider.

Gravitation, Physiker, Quantenphysik, Teilchenphysik

Phosphatglas als Medium für Festkörperlaser?

Hallo leute,

Ich habe mich einem ausgefallenem Hobby gewidmet und möchte das unmögliche möglich machen .

Ich möchte einen Festkörperlaser selber bauen . Ich habe tatsächlich soweit alles da was man braucht . Darunter auch einen Magnetronsputter zum silberbeschichten von Endflächen und eine Drehmaschiene um den Kristallrohling später mit Diamantwerkzeugen auf Maß zu bringen und die Endflächen Planeben zu Polieren .

Es geht hir nor noch um das Material des Mediums . Da es von Yttrium-Aluminium- Granat bin zum Saphier mehrere Möglichkeiten des sogenanntem Wirtsmaterial giebt,

Ich aber entweder nicht an die entsprechenden Substanzen komme oder aber die Schmelzpunkte und der Aufwand viel zu hoch währen soetwas selber herzustellen habe ich auch von der Möglichkeit gehört ein Glas nehmen zu können .

Jedoch geht da bei weitem nicht alles . Ich habe in einem Keramikschmelztiegel selikatisches Kalk natronglas hergestellt dass ich mit Mangandioxid dotiert habe .

Dabei kam aber nur lilanes Glas heraus das nicht Flouresszierte .

Als ich dann aus phosphorpentoxid und Natriumcarbonat im richtigem Verhälltniss Phosfatglas hergestellt habe und mit Mangandioxid dotierte ,leuchtete es Orange unter UV Licht . Ein guter Erfolg . Jedoch möchte ich es noch mit anderen Substanzen wie Manganoxid ( sollte Grün leuchten) und Kupferoxid versuchen .

Die Frage ist jedoch ob Phosphatglas überhaupt als Wirtsmaterial funktioniert .

Die Flouresszenz dauert nämlich verhälltnissmäßig lange an . 0,1sek geschätzt . Das ist ja sehr ungewöhnlich für einen Laserkristall ,deswegen habe ich Zweifel . Auch absorbiert er nur wenig der Uv Strahlung .Er Flouressziert entsprechend schwach . Dotiere ich das Glas viel höher funktioniert es nicht mehr .

Kann mir da jemand auf die Sprünge helfen? Giebt es Zusätzliche Substanzen die das ganze ändern können ? Oder ist Phosphatglas gänzlich ungeeignet als Wirtsmaterial ?

Laser, Quantenphysik

Meistgelesene Beiträge zum Thema Quantenphysik