Mathe Hilfe benötigt?

4 Antworten

Von Experte Willy1729 bestätigt

Du kannst noch etwas weiteres ablesen, nämlich dass der Nennergrad gerade sein muß. Das ist der Fall weil beide Funktionsteile neben der Polstelle gegen +unendlich gehen. Weiterhin kannst du die beiden Nullstellen der Funktion ausnutzen. Eine gebrochen-rationale Funktion wird zu 0 wenn der Zähler 0 wird. Stelle nun den Zähler in Faktordarstellung dar.


SOPHIA818 
Beitragsersteller
 20.01.2025, 09:28

Wie helfen mir die Nullstellen wie kann ich damit den Zähler ermitteln?

DerRoll  20.01.2025, 09:34
@SOPHIA818

Was verstehst du an "Faktordarstellung" nicht? Sagt dir der Satz vom Nullprodukt etwas? Schau dir die Antwort von Willy an.

Von Experte DerRoll bestätigt

Hallo,

Nullstellen bei -3 und 1 bedeuten, daß im Zähler (x+3)*(x-1) bzw. x²+2x-3 stehen muß.

Im Nenner muß wegen der y-Achse als Asymptote etwas mit x stehen. Da das höchste x im Zähler die Potenz 2 besitzt, muß es x² sein.

Dann noch die -5 als Konstante ergibt f(x)=-5*(x²+2x-3)/x².

Herzliche Grüße,

Willy


SOPHIA818 
Beitragsersteller
 20.01.2025, 09:43

vielen Dank! Wie bekomm ich es jetzt noch hin, dass der Graph durch P(2/6,2) läuft? Das macht er leider noch nicht wenn ich den Funktionsterm in Geogebra überprüfe…

Thommy8214  20.01.2025, 10:14
@SOPHIA818

Wie kommst du auf den Punkt? Da steht nichts im Text und ablesen kann man ihn auch nicht wirklich.

Thommy8214  20.01.2025, 10:20
@Thommy8214

Nachtrag: wenn ich aber x=2 in die ermittelte Funktion eingebe kommt y= -6,25 raus.

Hallo,

hier kommt mein Ergebnis zur Kontrolle.

🤓

https://www.desmos.com/calculator/ikpfucmoqp

Woher ich das weiß:Berufserfahrung – Unterricht am Gymnasium

y=P(x)/Q(x)

Asymptote 1: Strebt negatives x gegen 0 -> y strebt gegen +unendlich

Asymptote 2: Strebt positives x gegen 0 -> y stebt gegen +unendlich

Diese Bedingungen erfüllt Q(x)=1/x^2.

Asymptote 3: Nullstelle bei x=-3: Strebt x gegen -unendlich -> y strebt gegen -5

Asymptote 4: Nullstelle bei x=1: Strebt x gegen +unendlich -> y strebt gegen -5

P(x)=-5(x+3)(x-1)

Alle Bedingungen erfüllt

y=-5(x+3)(x-1)/x^2

y=-5(x^2+2x-3)/x^2

Woher ich das weiß:Recherche