wann partialbruchzerlegung anwenden?

... komplette Frage anzeigen

3 Antworten

Ähm, nein! Du hast das nicht so ganz verstanden: Zunächst ein mal: Man integriert i.d.R. gebrochen rationale Funktionen, keine Zahlen. Davon abgesehen: Wenn der Zählergrad höher ist, als der Nennergrad, kannst du keine Partialbruchzerlegung anweden! Dann ist es Zeit für Polynomdivision. Nach der Polynomdivision ist der Zählergrad auf jeden Fall kleiner als der Nennergrad, und genau dann kannst du Partialbruchzerlegung anwenden. Wenn die beiden Grade gleich sind, musst du auch zuerst die Polynomdivision nutzen, um den Zählergrad unter den Nennergrad zu bekommen.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von RudiRabenkopf
01.07.2014, 19:08

vielen dank. hab mich vertan. bin noch ein wenig matsch in der birne..von gestern.. du weischt =)

0

wenn Z>N dann Polynomdivision

wenn Z=N dann Vorzahlen von den höchsten Potenzen teilen; zB 4x³...../5x³.... dann y=4/5

wenn Z<N dann y=0 also ist x-Achse Asymptote.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von RudiRabenkopf
02.07.2014, 10:59

versteh ich nicht genau....wenn Z=N dann erhalte ich die stammfunktion, wenn ich die faktoren dividiere ?

0

wenn der Zählergrad größer oder gleich ist als/ wie der Nennergrad, dann zunächst Polynomdivision, dadurch erhält man evt. u.a. eine rationale Restfunktion, bei der der Zählergrad kleiner als der Nennergrad ist.

Für diese Restfunktion können evt. verschiedene Integrationsmethoden passen, z.B. Integration nach vorheriger Partialbruchzerlegung.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?