Wie lautet die rekursive Form der folgenden Zahlenfolge?

5 Antworten

a[n]=(-1)^n * n = pow(-1,n)*n

a[n+1]=pow(-1,n+1)*(n+1) Nachfolger

Quotient: pow(-1,n+1)*(n+1)/[pow(-1,n)*n]=(-1-n)/n

a[n+1]=a[n]*(-1-n)/n 

Nicht immer ist der Quotient einfach! Manchmal auch andere Funktionen (Differenz usw.)

Es gibt mindestens 4 Vorzeichenwechsel-Funktionen für Index n=ganzzahlig:

pow(-1,n)=cos(PI*n)=1-2*n+4*floor(n/2)=1 - n % 2 * 2

 mit n%2 = n modulo 2 = n-2*floor(n/2) mit floor=Abrunden

wobei die Modulo Funktion rechentechnisch die schnellste ist (besonders bei großen n).

Beim online Iterationsrechner ist Index nicht n sondern i und a[n] ist aB[i]:

http://www.gerdlamprecht.de/Roemisch_JAVA.htm##@NaC=Array(0,-1);aD[0]=0;aD[1]=-1;@N@Bi]=(1-i%252*2)*i;@Ci+2]=-@Ci+1]*2-@Ci];aD[i+2]=(@AaD[i+1])+1)*sgn(-aD[i+1]);@Ni%3E9@N0@N0@N@P-1,i)=cos(PI*i)

siehe Bild

Besonderheit bei aC und aD: zum Start 2 Vorgänger nötig:

aC: weil Definition 2 Vorgänger velangt

aD: weil sgn(0)=0 alle anderen Argumente liefern Vorzeichen +1 oder -1

 - (Mathematik, Zahlenfolgen, Rekursiv)

Besonderheit bei Verwendung von

aD[i+1]=aD[i]*(-1-i)/i; darf Index i erst bei 1 beginnen, da 

1/0 = undefinierte Polstelle

Start: aD[0]=0;aD[1]=-1;

Iteration: if(i>0)aD[i+1]=aD[i]*(-1-i)/i;  

(statt aD auch alles mit aB möglich)

0

= (-1)^n+1 * n         (-1)^n+1 = immer 1

Ist n ungerade ist das Vorzeichen plus. n gerade Vorzeichen minus.

n bestimmt die Größe

Beispiel:  = (-1)^12+1 * 12   n gerade > ( - )

                = - 12

Hast du das gesucht?

Nein, das ist nicht das was gesucht wird. Es wird eine rekursive Darstellung von a(n)=(-1)^(n+1)*n gesucht.

0

Hmm, Rechenweg ist immer schwierig, aber ich würde als Rekursion konstruieren:

a_0 = 1
a_i+1 = -sign(a_i) * (|a_i| + 1)

Statt "-sign(a_i)" kann man auch "(-1)^(|a_i|)" nehmen.

1
@Enders9

Richtig, aber die Frage, ob es effektiver hinsichtlich der Komplexität (Rechenleistung) ist, stelle ich mal in den Raum. Man könnte als weitere Alternative statt (-1)^(|a_i|) auch (-1)^(i+1) nehmen. Ich denke aber, die Signumfunktion führt da direkter zum Ziel.

0

Was möchtest Du wissen?