Wie berechne ich alle Punkte einer Gerade mit gegebenem Abstand von einer Ebene?

2 Antworten

1) berechne den Normalenvektor n = (2; 6; -9)

2) der Schnittpunkt mit der Ebene ist P (als Vektor)

3) also ist P1=P+3n  bzw. P2=P-3n die gesuchten Punkte (als Vektor angeschrieben).

Danke für die schnelle Antwort! Wie kommst du darauf? Ich verstehe nicht, wieso du dann plus bzw. minus 3*n machst? Also wieso muss das mit dem Normalenvektor multipliziert werden?

0
@alienaxx

siehe Bild. Der Normalenvektor hat Länge 1 (vorher normieren).

3 mal n hat Länge 3

;-)

0

siehe Bild.

Unklar ist: was ist mit Abstand gemeint? Der Normalabstand?

Oder der Abstand zu einem beliebigen Punkt der Ebene? Och bin von ersterem Ausgegangen. Letzteres bedarf nur einer kleinen Überlegung.

 - (Schule, Mathematik, Abitur)

Was möchtest Du wissen?