Quadratische Funktion zeichnen ohne Wertetabelle?

...komplette Frage anzeigen

6 Antworten

Hey! :)

In dem Fall musst du logischerweise die anderen Eigenschaften vom Graph nutzen, um den Graph zeichnen zu können.

Ablesen / Auswerten kannst du z.B. (aber auch nicht immer zwingend):

  • y-Achsenabschnitt
  • Nullstellen (Doppelte Nullstelle bei x = 1)
  • Symmetrie
  • Scheitelpunkt

Die Nullstellen kannst du in der gegebenen Funktion f(x) = 1(x-1)²+0 in der Klammer ablesen. Wichtig ist dabei immer, dass - nach rechts, und + nach links heißt. Auch hier steht dort "x-1" und die (doppelte) Nullstelle ist bei x = 1. Doppelt ist sie, weil das ganze zum Quadrat ist.

Kannst du ansonsten auch selbst berechnen.

_______________________________________________________

Bei der Symmetrie hast du 2 Fälle kennen gelernt:

Der Graph ist....

  • ...Achsensymmetrisch zur y-Achse
  • ...Punktsymmetrisch zum Ursprung

Dazu jeweils die Bedingungen:

►Achsensymmetrisch zur y-Achse:

f(-x) = -f(x)

Alle Exponenten sind gerade

Hier findest du mehr dazu:

http://www.mathebibel.de/achsensymmetrie-zur-y-achse

►Punktsymmetrisch zum Ursprung:

f(-x) = f(x)

Alle Exponenten sind ungerade.

Hier findest du mehr dazu:

http://www.mathebibel.de/punktsymmetrie-zum-ursprung

_______________________________________________________

►►►Beispiel:

Die Funktion lautet f(x) = x²

Du siehst, alle Exponenten sind gerade, somit muss die Funktion Achsensymmetrisch zur y-Achse sein.

Machen wir die Probe:

f(-x) = f(x)

Das heißt, du setzt alle x-Werte minus und wenn am Ende die Funktion f(x) wieder raus kommt ohne die hinzugefügten negativen Vorzeichen, dann ist die Funktion auch tatsächlich Achsensymmetrisch.

f(-x) = -x²

Da du nun -x², also (-x) * (-x) rechnest, kommt natürlich + raus. Denn - mal - ergibt bekanntlich + !

Das heißt also:

f(-x) = x²

►►►Achsensymmetrisch zur y-Achse

Was heißt das jetzt für dich?

Schau dir dazu das Bild 1 an. Findest du hier auch nochmal ausführlich auf folgender Seite:

http://www.frustfrei-lernen.de/mathematik/symmetrieverhalten.html

Die Achsensymmetrie zur y-Achse nennt man auch gerne Spiegelsymmetrie. Wie die Bedingung f(-x) = f(x) schon sagt, spiegelt sich jeder positive x-Wert eben wieder "links" als negativer x-Wert, um das mal so vorsichtig zu sagen.

Sprich: Wenn die Funktion Achsensymmetrisch zur y-Achse ist wie z.B. die Funktion f(x) = x², dann wäre z.B. der Punkt P(-1|1) auch auf der "anderen Seite gespiegelt" und somit existiert auch der Punkt P2(1|1).

Wenn du in der Klausur also weißt, dass die Funktion Achsensymmetrisch zur y-Achse ist, dann weißt du, dass du jeden Punkt schon einmal spiegelen kannst.

_______________________________________________________

Ich könnte dir dazu jetzt nochmal alle Themen zum eigentlichen Thema der quadratischen Funktionen aufzählen, was natürlich etwas viel wäre und hier glaube ich erst einmal genügt.

Wichtig ist, dass du den Stoff den ihr gelernt habt verstehst dun du eben auch Dinge wie die Symmetrie bestimmen (ablesen) und berechnen kannst.

Genauso musst du von der Scheitelpunktform (SPF) in die Normalform (NF) umformen können und anders herum. Alle diese Dinge sind später wichtig, um ohne eine Wertetabelle die Funktion zeichnen zu können.

Wenn du genaurere bzw. weitere Fragen hast, her damit! ;)

_______________________________________________________

Liebe Grüße

TechnikSpezi

Achsensymmetrie zur y-Achse (Spiegelsymmetrie) - (Schule, Mathe, Mathematik) Punktsymmetrie zum Ursprung (Standardsymmetrie) - (Schule, Mathe, Mathematik)
Antwort bewerten Vielen Dank für Deine Bewertung
Willibergi 18.09.2016, 10:12

"►Punktsymmetrisch zum Ursprung:

f(-x) = f(x)"

Kleiner Vorzeichenfehler.

Es muss heißen: f(-x) = -f(x) ^^

LG Willibergi

1
Willibergi 18.09.2016, 10:16
@Willibergi

Hier auch:

"►Achsensymmetrisch zur y-Achse:

f(-x) = -f(x)"

Es muss heißen: f(-x) = f(x)

Hast wohl einfach Punkt- und Achsensymmetrie vertauscht. ;-)

LG Willibergi

1
TechnikSpezi 18.09.2016, 12:29
@Willibergi

Na hervorragend -.-

Naja, scheine ich dort wirklich vertauscht zu haben...

Danke für den Hinweis! :)

1

Ermittle den Scheitelpunkt und überlege, ob die Parabel nach oben oder nach unten geöffnet ist. Dann hast du schon mal die Grundform.
Eventuell noch die Steigung (1. Ableitung) an bestimmten Punkten bestimmen.

Ich weiß nicht, wie genau eine "Wertetabelle" definiert ist. Ich würde dennoch einzelne x-Werte einsetzen und die y -Werte berechnen und in den Graphen eintragen. Ich muss sie ja nicht in die Tabelle schreiben ;)

Antwort bewerten Vielen Dank für Deine Bewertung

Du hast hier die Scheitelpunktform der Parabelgleichung vorliegen:

f(x) = a(x - d)² + e

Hier liegt der Scheitelpunkt nämlich bei (d|e).

Deine Funktion sieht folgendermaßen aus:

f(x) = 1(x - 1)² + 0 = (x - 1)²

Der Scheitelpunkt deiner Parabel liegt also bei (1|0). Außerdem ist sie kongruent zur Normalparabel, da sie den Öffnungsfaktor 1 hat.

Wenn du keinerlei Hilfsmittel wie eine Parabelschablone verwenden darfst, würde ich dir empfehlen, einige Funktionswerte der Parabel im Kopf zu berechnen.

f(-1) = (-1 - 1)² = (-2)² = 4

f(0) = (0 - 1)² = (-1)² = 1

f(1) = (1 - 1)² = 0² = 0

f(2) = (2 - 1)² = 1² = 1

f(3) = (3 - 1)² = 2² = 4

Damit kannst du nun die Parabel skizzieren.

Wichtig ist, zu erkennen, dass der Scheitelpunkt an vorliegender Form schon abgelesen werden kann. :)

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach. 

LG Willibergi

Antwort bewerten Vielen Dank für Deine Bewertung

Scheitelpunkt ablesen S(1 ; 0) einzeichnen und mit Schablone aus einem Papiergeschäft (oder selbst basteln) die Parabel einzeichnen.

Antwort bewerten Vielen Dank für Deine Bewertung
kurdigms 17.09.2016, 23:06

Lieben dank, wird in der Klausur trz schwierig, darf keine Schablone verwenden :/

0
Ellejolka 17.09.2016, 23:11
@kurdigms

und Wertetabelle verboten?

dann heimlich ein paar Werte berechnen;

(1;0) (2;1)

und spiegeln an y-Achse

0

Ist doch einfach, einfach Werte einsetzen. 
x = -2 ------>f(x) = 9
x = -1 ------>f(x) = 4
x=0 ------> f(x) = 1
x=1  ---->f(x) = 0
x =2 -----> f(x) = 1
x = 3 -----> f(x) = 4

Antwort bewerten Vielen Dank für Deine Bewertung
Aweza94 18.01.2017, 15:10

das ist im prinzip eine wertetabelle aber er will es ohne wertetabelle lol

0

Die beiden Punkte (x|y) ausrechnen

Antwort bewerten Vielen Dank für Deine Bewertung
kurdigms 17.09.2016, 23:02

Dankeschön, aber wie mache ich das noch mal genau?😯

0
mehlschwalbe02 17.09.2016, 23:03

Im Internet nachschauen. Du rechnest zuerst den Anstieg aus, dann setzt du den ein und dann umformen oder so, hab keine ahnung mehr sry

1

Was möchtest Du wissen?