Matheaufgabe Parabeln Kl.10 Realschule?
Hallo Leute, ich mache gerade Hausaufgaben und ich komme einfach nicht weiter. Ich habe auch schon Mitschüler und meine Eltern gefragt, aber niemand weiß wie ich vorgehen soll. Die Aufgabe ist: Die Svinesund-Brücke verbindet Norwegen und Schweden. - Bestimme mithilfe der Abbildung die Gleichung des äußeren Brückenbogens, wenn der Scheitelpunkt 30m über der Fahrbahn liegt.
Dann ist da noch die Brücke gezeigt. Es ist ein Foto von der Brücke, aber es gibt keinerlei Maße. Mein Problem ist jetzt, ich weiß zwar wo der Scheitelpunkt liegt S(0I30) aber um die Gleichung aufstellen zu können muss ich doch noch ein a haben. Die Normalparabel ist ja x^2 und da ich nicht weiß wie die Stauchung (Also faktor a) ist, kann ich die Gleichung auach nicht auflösen oder? Ich könntge höchstens schätzen, aber das wird nicht genau... ich könnte nur sagen,dass a unter 1 sein muss, da sie gestauchter ist, als die Normalparabel.
Ich verzweifel gerade echt. Ich hab zwar schon die Lösung, aber das bringt mir ja nichts, wenn ich den Weg dahinter nicht verstehe.
Die Lösung ist: a=0,004 also y=0,004x^2+30
woher haben die die 0,004? Es sind wie gesagt keine weiteren Maße in dem Foto abgebildet.
Ich hoffe ihr könnt mir helfen.
5 Antworten
Es muß zumindest angegeben sein, wo der Bogen auf die Brücke "trifft".
Rein rechnerisch ist die Länge des Bogens ca. 173,20 m, d. h. von Mitte des Bogens nach links und rechts 86,60 m (was die Nullstellen wären); eine dieser Werte sollte angegeben sein. (a müßte übrigens -0,004 sein, da der Bogen nach unten und nicht nach oben geht :) )
kann man keinen weiteren Punkt oder die Nullstelle ablesen?
Scheitelpunktform ist y=f(x)= a * (x + b)^2 +c hier ist c=30 und b=0
also muss die Form sein y= - a * x^2 + 30
Weil aber keine weiteren Angaben vorliegen,kann a nicht bestimmt werden.da ja die Brücke dann jede mögliche Spannweite haben kann.
Die Aufgabe ist so nicht lösbar.
Hast dus gezeichnet?
Die Funktion ist wie du schon hast:
a*x²+30 = f(x)
Du willst das a rausfinden?`Ganz einfach. Du setzt einen Wert für x und y ein. Such dir einen leicht abzulesenden Wert.
setze dann ein
a*x²+30 = y
und lös nach x auf
y*1/a-30 = x²
Wurzel ziehen dann hast du x.
Frag wenn was unklar ist. Du musst halt schon einen weiteren Punkt gegeben haben oder ablesen können.
DANKE! Das ist sehr einleuchtend. Aber nochmal eine Frage: Ist das dann nicht totale Rumraterei? Ich meine, falls so eine Aufgabe in meiner Klausur drankommt dann komm ich doch nie im Leben auf 0,004 :D
Doch kommst du. Ich habs nur kompliziert geschrieben.
Hätte man den X Wert 5 und Y Wert 30,1 abgelesen geht man folgendermaßen vor. ( ist jetzt unrealistisch, deiner wäre wahrscheinlich deutlicher )
a*5²+30 = 30,1 | -30
a*25 = 0,1 | : 25
a = 0,004
Ist recht simpel. Ich habs nur allgemein formuliert. Ich kann dir auch die allgemeine Formel für a schreiben, das würde dich aber nur verwirren. Machs so, so ists leicht ;)
Daran glaubst du doch selbst nicht
wenn man sich nur um 0.1 verließt erhält man entweder
a*5²+30 = 30,0 | -30
a*25 = 0 | : 25
a = 0
oder
a*5²+30 = 30,2 | -30
a*25 = 0,2 | : 25
a = 0,008
So etwas kann man bei besten Willen nicht ablesen.
Und wie schon gesagt kann 0.004 eh nicht stimmen weil a negativ sein muss
ÜBRIGENS:
Wenn du wirklich keinen Punkt gegeben hast kannst du den Schnittpunkt mit der Y-Achse nutzen, aber nur bei einer verschobenen Parabel. Wenn sie nicht verschoben ist ist der Schnittpunkt der Scheitelpunkt.
Dafür setzt du x = 0 bei
a*(x-b)+c
und so kriegst du den Schnittpunkt mit der Y-Achse. Hier leider nicht der Fall.
In Schulklausuren ist es üblich, dass man einen Punkt DEUTLICH, darstellt. Der ist dann meisten an einem Wert wo sich die Kästchen in deinem Heft schneiden würden. Die sind leicht abzulesen und da vertut man sich in der Regel nicht :)
Ich kann dir ein bisschen nachrechnen und dir einen geraden X und Y-Wert raussuchen, dann ist es einleuchtender, aber das kostet mich auch Zeit :D
Nun ich kann dir auf jedenfall sagen, dass die Lösung falsch ist.
Der Brückenbogen befindet sich über der Straße (30m) desswegen auch die +30
aber der Brückenbogen muss ja zur Seite nach unten gehen.
0,004x²+30 ist eine nach oben geöffnete Parabel,
Dem nach fliegt der Brückenbogen in der Luft und trifft nie wieder auf die straße!
Es gäbe die möglichkeit sich über die Breite des Brückenbogenz zu informieren.
Nach Wikipedia ist die längste Stützweite 247m, und das dürfte der Brückenbogen sein, nach dem Bild geht der Bogen aber auch unter der Fahrbahn noch ein gutes stück weiter und ich weiß nicht ob die Fahrbahn breite oder die Fundament breite gemeint wäre.
Demnach wäre aber die richtige Antwort
y=-0.002x²+30
aber das dort ein minus hingehört ist so sicher wie das Armen in der Kirche
Nein, aber nehmen wir an man könnte es, was müsste ich dann machen?