Warum ist hier den y Wert +2 (Cosinus-Funktion)?
also f(x)=3cos x +2
soweit ich weiß ist die Cosinus Funktion bei +1 im y Achse dann geht runter
hier geht es ab 5 runter also um 4 nach oben verschoben?
Oder zählt die Verschiebung ab der Ruhelinie? (ab 2) dann sinds immer noch 3 nach oben
also wäre Dankbar für Korrektur hatte wegen dem Krieg keine vernünftigen Grundlagen :(
3 Antworten
Die „+ 2“ hinten bewirkt um eine Verschiebung um 2 nach oben.
Oder zählt die Verschiebung ab der Ruhelinie? (ab 2) dann sinds immer noch 3 nach oben
Diese Verschiebung kann man am ehesten an der Ruhelinie erkennen, ja. Wie du da auf den Wert 3 kommst, ist mir nicht klar.
Das Maximum liegt bei 5. Das Minimum liegt bei -1. Der Mittelwert liegt dann bei...
Die Ruhelinie liegt damit 2 Einheiten über y = 0.
[y = 0 entspricht der x-Achse bzw. der vorigen Ruhelinie von y = 3 cos(x).]

sorry habs erst jz gerafft. Sowohl bei originalem Sinus und Cosinus Funktion ist die Mittellinie bei null.. und durch die Mittellinie der neuen Funktionen berechnet man die Verschiebung. Danke
ja also 2 Die Ruhelage war mein Fehler. Jetzt ists klar. Dachte man muss die Verschiebung ab 1 berechnen weil originale Cosinus hat ihren y wert bei 1
Der cos ist um 3 gedehnt…
Max = 5
Min = -1
Stelle Dir 3 cos x als Wechselspannung vor. Die 3 hast Du mit dem Lautstärkeregler eingestellt.
an jeder Stelle x wird 2 dazu addiert. Damit wird die ganze Welle um 2 nach oben geschoben. Das ist dann der Fall, daß 2 Volt Gleichspannung mit einer 6Vss überlagert oder gemischt werden.
+2 verschiebt die ganze Funktion um 2 Einheiten nach oben und der Faktor 3 streckt sie auf 6 Einheiten von -3 bis +3.
Max: 3*1 +2 = 5
Min: 3*(-1) +2 = -1
Seht doch da. f(x) =3 * cos(x) + 2. Da kommt davon, wenn man keine Klammern schreibt.
ja aber will ja wissen wie man die 2 abliest
Aus dem Maximum 5. oder dem Minimum -1. 3*(-1) = -3, aber das Minimum ist bei -1. Daher muss man +2 addieren um das Minimum zuer erhalten, das man abliest. Also c=+2 ist die Verschiebung.
Wenn Du es rechnerisch machen willst: Mitte zwischen Maximum und Minimum:
c = (Max + Min) / 2 = (5 + (-1))/2 = 4/2 = 2
wieso dann steht in der Funktion +2?