Stimmt es das eine Ganzrationale Funktion fünften Grades immer vier Nullstellen hat?

4 Antworten

Nein, beispielsweise hat die durch f(x) = x⁵ gegebene ganzrationale Funktion f nur eine einzige Nullstelle, nämlich bei x = 0.

Die durch g(x) = x⁵ - 5 x³ + 4 x gegebene ganzrationale Funktion g hat hingegen 5 verschiedene Nullstellen, nämlich -2, -1, 0, 1, 2.

Eine ganzrationale Funktion 5-ten Grades hat mindestens eine Nullstelle und höchstens 5 Nullstellen.

Nicht immer, sondern höchstens (und mindestens eine) ...

nö. Eine muss sie haben. f(x) = x^5 + Konstante z.B. hat nur eine.

nein, die funktion kann auch nach oben oder unten verschoben werden

Bei ungeraden Funktionen bleibt trotzdem immer mindestens eine Nullstelle erhalten.

0

Was möchtest Du wissen?