Bestimme die Nullstellen der Funktion durch Rechnung?

 - (Mathe, Mathematik, Funktion)

8 Antworten

a) f(x)=x^2-16 ergibt 0=x^2-16 also x1,2=+/-Wurzel(16)=+/-4 x1=4 u. x2=-4

Probe: f(4)=4^2-16=16-16=0 und f(-4)=(-4)^2-16=16-16=0

b)f(x)=0=x^2+9 hier gibt es keine "reelle Nullstelle" (Schnitpunkt mit der x-Achse

es gibt hier nur 2 "konjugiert komplexe" Lösungen

x1,2=Wurzel(-9) ergibt z1=0+i 3 und z2=0-i 3 siehe Mathe-Formelbuch "komplexe Zahlen.

f(x)=a*x^2+c

a>0 Parabel nach "oben" offen,"Minimum" vorhanden

a<0 " "unten" offen,"maximum" vorhanden

c>0 verschiebt die Kurve nach "oben"

c<0 " " "unten"

f(x)=1*x^2+9 abgeleitet

f´(x)=0=2*x Nullstelle bei x=0 noch mal abgeleitet

f´´(x)=2>0 also liegt ein "Minimum" vor

f(0)=0^2+9 =9 also liegt die gesamte kurve über der x-Achse,weil ja das Minimum über der x-Achse liegt und der Graph (a>0) nach oben offen ist.

c) f(x)=0=1*(x+2)^2-9 Wurzel(9)=x+2 x1,2=+/- 3-2

x1=3-2=1 und x2=-3-2=-5

d) f(x)=0=1*(x-4)^2-1 ergibt Wurzel(1)=x-4

x1,2=+/- 1+4 ergibt x1=1+4=5 und x2=-1+4=3

e) f(x)=0=x^2+3*x ist eine Gemischtquadratische Gleichung mit q=0

Form 0=x^2+p*x Nullstellen bei x1=0 und x2=-p

x2=-(3)=-3

f) f(x)=x^2-6*x hier ist p=-6 eingesetzt x2=-(-6)=6 und x1=0

g) f(x)=0=x^2+6*x-5 hat die Normalform 0=x^2+p*x+q siehe Mathe-Formelbuch

"quadratische Gleichung" und auch die "Lösbarkeitsregeln"

Nullstellen mit der p-q-Formel x1,2=-p/2 +/- Wurzel(p/2)^2-q)

hier p=6 und q=-5 eingesetzt

x1,2=- (6)/2 +/- Wurzel(6/2)^2-(-5)=-3 +/- Wurzel(9+5)

x1=-3+3,7416..=0,741..

x2=-3-3,7416..=6,74..

h) f(x)=0=x^2-12*x+36 auch hier die p-q-Formel anwenden

p=-12 und q=36 eingesetzt

x1,2=-(-12)/2 +/- Wurzel(-12/2)^2-36)=6 +/- Wurzel(36-36)

x1=6 es gibt nur 1 "reelle Nullstelle" siehe die "Lösbarkeitsregeln" im Mathe-Formelbuch

prüfe auf Rechen- u. Tippfehler.

Woher ich das weiß:Studium / Ausbildung – hab Maschinenbau an einer Fachhochschule studiert

Du setzt die Gleichung mit 0 gleich und musst dann den wert für x berechnen.

Also bei Aufgabe a:

x2-16 = 0 (finde beom handy keine hochstelltaste für die Gleichung)

Dann rechnest du links und recht vom Gleichzeichen "+16" damit hasz du dann:

x2 = +16

Um vom x2 zu x zu kommen musst du die Wurzel nehmen. Dasusst du dann auch mit der 16 machen. Das ergibt dann eine 4.

Ergebniss also:

X = 4 und das ist die Nullstelle.

Hoffe das war richtig...habe das viele Jahre nicht mehr gemacht :) wenn nicht, bitte ich um Korrektur!!

Das Zeichen für "hoch" beim Handy ist wie hier bei GF: ^

a³ = a^3

0
@Volens

Bin ein paar Jahre aus der Schule raus. Aber danke :D bin froh, dass mir das überhaupt alles noch was sagt xD

0

Du musst einfach diese Funktionsgleichung mal Null setzen,

also z.B. bei a) x^2-16=0.

Und dann nur noch auflösen.

Es steht doch da was du machen musst. Man kann überall sogar die PQ-Formel anwenden, wenn man durch Basisoperationen nicht weiter kommt.

Nullstellen heißt wo die funktion die x achse und die y achse schneidet heißt du brauchst 2 werte:
Einen mit dem y=0 und einen mit x=0. Vllt hilft dir das ja schon weiter :)

Was möchtest Du wissen?