Was ist unendlich plus endlich?

17 Antworten

In der Mathematik wird Unendlich als eine beliebig große natürliche Zahl verstanden, die sich nicht weiter definieren lässt, weil die Reihe der natürlichen Zahlen nach oben offen ist.

Wenn man Unendlich als abstrakte Zahl N notiert, ist Unendlich + Unendlich = N + N.

Einer Fünfjährigen würde ich erklären, dass Unendlich + Unendlich mehr ist, als sie sich vorstellen kann, selbst wenn sie die Augen ganz fest zudrückt und nachdenkt - und davon dann das Doppelte.

Habe jetzt per Zufall nochmal in die Frage geschaut und gesehen, dass Du ja nach Endlich + Unendlich gefragt hattest.

Wenn man also Unendlich als abstrakte Zahl N notiert und davon ausgeht, dass N-1 Endlich entspricht, ist Unendlich + Endlich = N + N-1.

0

Die Unendlichkeit ist das Gegenteil von Endlichkeit. Das Unendliche, Grenzenlose, Nicht-Endende ist der direkten menschlichen Erfahrung unzugänglich und am ehesten mit dem Begriff der unbegrenzten Weite zu assoziieren.
http://de.wikipedia.org/wiki/Unendlich
Endlichkeit ist die Zeit bis zum Ende eines jeden Lebens, das Überblickbare, das Fasbare, die Endlichkeit jeden Gefühls
Ein Seil ist unendlich lang, das bis in den Himmel reicht.
Das Seil ist endlich lang, das zwei Objekte in überschaubarer Entfernung miteinander verbunden hat.

Ein wenig spät, aber eine Sache fehlt mir gänzlich hier. Für ein kleine Mädchen, wenn auch inzwischen nicht mehr so klein ^^, sollte es durchaus reichen zu erklären, dass das Objekt niemals aufhört. Quasi ein Bonbon-Automat der immer einen BonBon geben kann. Stellt man nun einen zweiten Automat dazu, kann sie dennoch "nur" unendlich viele essen, nicht 2*unendlich viele. Mathematisch nicht ganz korrekt, aber ausreichend um die Menge etwas bildhafter zu machen. 

Vorab: Physikalisch ist Unendlich natürlich, wie es der Name sagt, Unendlich. 

Das ist natürlich nicht die fehlende Sache. 

---

Um es genauer zu nehmen, es gibt tatsächlich Mathematische Werte die größer sind als "Unendlich".

Ѡ (kleines Omega) ist die kleinste unendliche Ordinalzahl. Anders gesagt, würde man Unendlich fertig gezählt haben, so hätte man Ѡ erreicht. 

Kompliziert wird es nun mit der Rechnung Ѡ+1. Da Ordinalzahlen die Ordnung angeben, nach 1 kommt 2 usw., muss das nicht bedeuten, das Ѡ+1 größer ist als Ѡ. Es kommt lediglich danach. Aus diesem Grund gibt es die Kardinalzahlen. Diese geben an, sagen wir, was mindestens verwendet wurde, um diese Zahl zu erreichen.

Die kleinste Kardinalzahl für eine abzählbar unendliche Menge ist Alpeh mit Index 0 -> א

Jetzt, wo man Mengen und deren Ordnung besser beschreiben kann, so kann man nun auch "weiter" zählen. Das muss man auch. Denn die die Potenzmenge von Aleph 0 ist nun mal mehr als Unendlich. 

Die Potenzmenge von der Menge 1,2,3 , also P({1,2,3}) wäre;

P({1,2,3}) = {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} sowie {1,2,3}. Es sind also mehr Element vorhanden als nur bei 1,2,3. Um es genau zu nehmen 8, oder 2³.

Diese Potenzmenge lässt sich nun auf Aleph 0 anwenden. Es wäre also P(Alpeh 0). Also der Potenzmenge von Unendlich. Das Beispiel zuvor hat gezeigt, diese Menge muss folglich ermaßen größer sein. Hier befinden wir uns nun in dem Bereich den deine Tochter erfragt, denn, demnach gibt es Ѡ+Ѡ. All dies lässt sich nach Aleph 0 anstellen. Auch Ѡ*Ѡ*Ѡ*Ѡ ist dann möglich, oder anders gesagt. Unendlich mal Unendlich usw. 

Und ja, auch hier gibt es ein Ende, denn, was ist wenn man Unendlich OFT! Unendlich und danach was Ordnet? Richtig, wir haben Ѡ Index 1 erreicht. Anders gesagt, die Menge der Zahlen die Notwendig sind um Ѡ 1 zu erreichen, Aleph 1.

Diese Schreibweise kann man nun, wer hätte es gedacht, unendlich weiter führen. Ѡ 2 sowie Aleph 2, Ѡ 3 sowie Aleph 3, Ѡ 4 sowie Aleph 4 usw. Solange, bis wir Ѡ Index Ѡ sowie Aleph Ѡ erreicht haben. Quasi unendlich viele Unendlichkeiten!! Auch hier endet es noch nicht. Was ist, wenn ich Unendlich viele Unendlichkeiten habe und diese mit zwei multipliziere? Nun, ich hab dann Alpeh Index 2*2. Dieses Spiel geht auch unendlich weiter, bis Aleph Index 2² - > Unendlich viele Unendlichkeiten diese unendlich oft multipliziert.

Jetzt haben wir also "Unendlich" tatsächlich größer gemacht, bis dahin wie wir auch dies unendlich oft größer machten. Auch diese Schritte gehen nun unendlich oft.

Zum besseren Verständnis sollte das Bild nun helfen.

---

Gibt es denn nun eine Zahl die so groß ist, dass diese selbst mathematisch niemals erreicht wird? JA!

Hierbei wird gerne θ (klein Theta) verwendet. Eine stark unerreichbare Kardinalzahl, oder auch inaccessible cardinal. 

Die physikalische Erreichbarkeit von Ѡ ist unmöglich, denn wir können immer auf eine Ordinalzahl, zum Beispiel 2000, eine Zahl dazu nehmen, also 2001. Genau so verhält sich die inaccessible cardinal in der Mathematik. Egal wie oft wir Ѡ mit Ѡ multiplizieren, potenzieren, addieren, wir erreichen niemals θ. Wir haben also den selben "Sprung".

Aber was wäre Mathematik ohne noch größer zu werden?

Es gibt Theorien mit Axiomen, so komplex, das selbst 0=1 möglich sein könnte. So gewaltig, so komplex, dass man vermutet, die sogenannte Kontinuumshypothese einst damit eventuell lösen zu können.

Aber wir driften damit so weit in die Mathematik, so dass ich hier auch enden möchte. 

---

Fehler, Verbesserung, sonstiges jederzeit gerne.

Rechtschreibfehler sind gewollt und dürfen behalten werden :3

 - (Mathematik, Summe, Unendlichkeit)  - (Mathematik, Summe, Unendlichkeit)
  1. übrigens: unendlich + (unendlich-) = unendlich+- oder unendlich > usw. da gibts auch >>,<,<<,++,-+,-- und viel mehr 2.an euch kinder (so unter 10): finger weg von unendlich!zuerst nachdenken und verstehen was 0, ,NULL bedeutet.
  2. 0 dividiert durch 0 ist ja vielleicht auch hirnzerstörend genug!

LG,BIGOverkILL

so ein schmus hier.

unendlich ist nunmal unendlich. Erklär's deiner tochter vielleicht so:

Endlich heißt, wenn man bis zu einer endlichen Zahl zählt, wird man irgendwann fertig. Vielleicht erst in hundert oder tausend Jahren.

Wenn man

Was möchtest Du wissen?