Nehmen wir einfach mal irgendeine Zahl a. Sicherlich gilt dann doch a + (-a) = 0.

Jetzt nehmen wir noch irgendeine Zahl b, die nicht 0 ist, und multiplizieren beide Seiten dieser Gleichung mit -b:

( a + (-a) ) * (-b) = 0 * (-b)

Jetzt etwas vereinfachen:

-(a*b) + (-a) * (-b) = 0

Jetzt sieht man ja eigentlich schon, dass a*b = (-a) * (-b) sein muss, damit die Gleichheit gilt.

Das ist (mit etwas "Handwaving") ein Beweis, der im Prinzip nur die Peano-Axiome benutzt.

...zur Antwort
In jedem Tutorial werden immer nur  ^2 und ^4benutzt.

Das liegt eben daran, dass die Substitution nur funktioniert, wenn alle Exponenten gerade sind. Bei deiner Funktion bleibt dir eigentlich nur übrig, eine Nullstelle zu raten und dann eine Polynomdivision durchzuführen, um an die restlichen Nullstellen zu kommen. (Oder du probierst einfach alle Teiler von 32 durch [wieso, siehe Satz über rationale Nullstellen] und findest dann heraus, dass deine Funktion praktischerweise drei ganzzahlige Nullstellen hat)

...zur Antwort

Im Allgemeinen gilt ja für z=a+bi ja

 Wegen i = 0+1*i ist dann



...zur Antwort

Was kommt denn raus, wenn du auf beiden Seiten quadrierst? Erinnere dich daran, dass du am Ende zu zeigen hast, dass n eine Quadratzahl ist - kannst du den Ausdruck, der durch das Quadrieren entsteht, vielleicht als Quadratzahl darstellen?

...zur Antwort

Eine solche Funktion existiert immer (zumindest solange die Punkte alle verschiedene x-Koordinaten haben) und ist eindeutig. Die Existenz ist knifflig zu beweisen, aber letzten Endes kann man zeigen, dass es für n Punkte immer eine Funktion vom Grad n-1 gibt, die durch diese Punkte verläuft.

Die Eindeutigkeit ist hingegen recht simpel zu beweisen:

Angenommen, es gibt zwei Funktionen, die durch die vorgegebenen n Punkte gehen. Ich nenne diese Funktionen mal f(x) und g(x), und f(x) soll die Funktion mit dem höheren Grad sein. (Wenn beide Funktionen den selben Grad haben, ist es egal, welche Funktion f und welche g ist).

Dann hätte die Funktion f(x)-g(x) ja höchstens den Grad von f(x),also n-1.Zeitgleich hat diese Differenzfunktion aber genau so viele Nullstellen, wie Punkte vorgegeben sind. Für diese Punkte gilt ja gerade f(x)=g(x), also f(x)-g(x)=0. Somit hat f(x)-g(x) an jedem der vorgegebenen Punkte eine Nullstelle.

Nun hat man hier aber eine Funktion, die mehr Nullstellen als ihr Grad hat. Eine Funktion vom Grad k kann aber maximal k Nullstellen haben. Hierbei gibt es eine Ausnahme: Das Nullpolynom. Das ist einfach eine Funktion, die jeden x-Wert auf 0 abbildet, d.h. h(x)=0 für alle x.

Es muss also f(x)-g(x) = h(x) = 0 für alle x gelten. Daraus folgt dann natürlich unmittelbar f(x)=g(x). Also ist f(x) eindeutig.

...zur Antwort

Deine Zielfunktion stimmt soweit. Jetzt musst du nur noch schauen, für welches a die Funktion ihr Maximum annimmt.

Die Maße ergeben sich dann aus dem Doppelten von a (da das Rechteck ja von der y-Achse in zwei Teile geteilt wird) und dem Funktionswert der Funktion f an der Stelle a.

...zur Antwort

Du nimmst an, dass es einen Grenzwert, also a, gibt, und führst dies dann auf einen Widerspruch, genauer: Finde dann ein ε, für das (ab einem gewissen n) |an-a| ≥ ε gilt.

...zur Antwort

Für Punktsymmetrie zum Ursprung muss f(-x) = -f(x) gelten. Dein Ansatz mit dem ungeraden Exponenten ist genau die richtige Idee. So zeigt man es mathematisch exakter:







Im Prinzip bildet man einfach nur -f(x) (oder f(-x)) und formt so lange um, bis man das entsprechend andere hat.

...zur Antwort

Tipp: Zeige, dass der Ausdruck in der Summe für alle x>0 größer oder gleich

(x-1)/(n*x)

ist. Benutze dann das Minorantenkriterium. Damit hast du den Fall x>1 abgedeckt. x=1 sollte trivial sein.

Für 0<x<1 greift das Minorantenkriterium hier aber nicht, da die Summenglieder dann alle negativ sind, die Voraussetzungen für das Minorantenkriterium also gar nicht erfüllt sind.

...zur Antwort

Für den Flächeninhalt des Dreiecks brauchst du ja die Formel Grundseite * Höhe / 2. Wegen der Gleichschenkligkeit des Dreiecks sollte die Grundseite bekannt sein; diese ist dann einfach k. Für die Höhe muss man etwas tricksen.

Stell dir mal vor, dass du von der Spitze bis zur Grundseite eine Linie ziehst. Diese Linie teilt das Dreieck dann in zwei rechtwinklige Dreiecke auf, die k/2 und die Höhe h als Katheten und k als Hypotenuse haben. Gemäß dem Satz von Pythagoras gilt dann k²=(k/2)²+h²

Das ganze stellt man nun nach h um:

h² = k²-(k/2)², also h² = k² - k²/4 und somit h=√( k²-(k/2)²) Wenn man jetzt den Ausdruck unter der Wurzel zusammen rechnet, steht da h=√ (k² - k²/4), bzw. h=√(3/4*k²), da k²-k²/4 eben 3/4*k² ist. Jetzt kann man aus 3/4 * k² noch die Wurzel ziehen, das kann man hier komponentenweise machen: Die Wurzel aus 3/4 ist √3 / 2, die Wurzel aus k² ist k, insgesamt also h=√3 / 2 * k.

Dadurch kommt man dann gemäß der Flächenformel auf den Flächeninhalt des Dreiecks: Dreiecksfläche = 1/2 * k * h, also 1/2 * k * √3 / 2 * k, bzw. wenn man die Reihenfolge der Faktoren ändert und die Brüche zusammenrechnet, √3 / 4 * k²

__________

Jetzt kommt meiner Meinung nach ein Fehler in der Berechnung; der Gedankengang ist hier: Spitzbogenfläche minus Kreisflächen gleich blaue Fläche. Das ist auch genau der richtige Gedanke, aber es wurden hier aber die Kreisflächen von der Dreiecksfläche abgezogen. Diese ist aber nicht die Spitzbogenfläche, da hier noch die zwei gekurvten Stückchen über dem Dreieck fehlen!

Hier nochmal ein Bild, um es etwas einfacher zu machen. Die rot ausgemalte Fläche nenne ich mal S (ich war zu faul, links jetzt auch noch auszumalen), und wenn man jetzt eben die beiden S und die Dreiecksfläche zusammenrechnet, hat man die Fläche des Spitzbogens. Wenn man aus der Spitzbogenfläche nun die ganzen Kreise rausschneidet, bekommt man genau die blaue Fläche.

_____

Hier wäre mein Vorschlag:

Für die Fläche muss nun also gelten:



Dreiecksfläche? Kennen wir. Die ganzen Kreisflächen? Kennen wir. Fehlt nur noch S. das ist wieder etwas tricky.

Guck dir mal die grüne Fläche an, die in der Lösung ist. Diese ist ja mit 1/6 * k² * pi bekannt und setzt sich aus der Dreiecksfläche ( √3 / 4 * k² ) und einem Stückchen (S) zusammen, also muss doch gelten:



Umstellen ergibt



Somit hat man letztendlich:

...zur Antwort

6/5 ist ja nichts anderes als 1 + 1/5. Demzufolge kann man den Exponenten also zu

 umschreiben. Jetzt wendet man das Potenzgesetz a^(b+c)=a^b * a^c an. (In diesem Fall wäre b=1 und c=1/5). Dadurch erhält man dann

 bzw wegen a^1=a dann



...zur Antwort

Da die Definitions- und Wertemengen jeweils endlich sind, kannst du dich hier im Prinzip mit Brute Force durcharbeiten und musst die ganze Sache nicht wirklich formal beweisen.

Damit die Funktionen bijektiv sind, müssen sie insbesondere auch injektiv sein. Bei zwei der Funktionen findet man jedoch recht schnell jeweils zwei verschiedene Urbilder, die unter der entsprechenden Funktion das selbe Bild ergeben. Somit ist die Injektivität verletzt.

Bei der übrig gebliebenen Funktion musst du dann noch schauen, ob die Surjektivität gegeben ist. Dazu kannst du ja einfach alle Funktionswerte berechnen und schauen, ob jeder Wert aus dem entsprechenden Wertebereich getroffen wird. Wenn das der Fall sein sollte, kannst du die Umkehrfunktion ja ganz explizit über die einzelnen Werte definieren, indem du einfach die 0 auf ihr Urbild zurückschickst, die 1 zurückschickst usw.

...zur Antwort

Man kann das nur so richtig verstehen, wenn man die Umformung von der Normalform in die Scheitelpunktform macht. Um ziemlich viel Termrechnung kommt man leider nicht herum:



a ausklammern:



Quadratische Ergänzung:



Erste binomische Formel:



Ausmultiplizieren:



Mit der Belegung d = -b/(2a) und e= -b²/(4a)+c kommt man dann auf die Scheitelpunktform.

Deine Frage ist ja nun, wieso man d so belegt, dass in der Scheitelpunktform -d und nicht +d vorkommt.

Schauen wir uns dazu mal die Nullstellen der Funktion an. Gemäß der Mitternachtsformel gilt für die Nullstellen x1 und x2:



Die x-Koordinate des Scheitelpunkts liegt genau zwischen den beiden Nullstellen. Man muss also nur noch herausfinden, welche Zahl zwischen den beiden Nullstellen liegt. Allgemein macht man das ja, indem man die entsprechenden Werte addiert und das Ergebnis durch 2 teilt. Genau so geht es hier. Ich nenne den x-Wert des Scheitelpunktes mal d. Gaaanz zufällig. :>

Jetzt einfach etwas zusammenfassen. Man darf hier nur nicht mit den Brüchen durcheinanderkommen:

...und deshalb kommt in der Scheitelpunktform -d und nicht d vor. Das d, auf das man durch diese Mittelwertberechnung kommt, ist nämlich eben -b/(2a), aber in der Scheitelpunktform kommt +b/(2a) vor. Deshalb muss es in der Scheitelpunktform dann eben -d sein.

...zur Antwort

Das wirst du mit regulären Umformungen nicht hinbekommen, da hier x nicht nur als Exponent, sondern auch als "normaler" Ausdruck vorkommt.

...zur Antwort

Du hast recht. Es müsste x³-6x²+64x=0 heißen. Dadurch ergibt sich dann x(x²-6x+64)=0.

...zur Antwort