wurzeln mit binomischen formeln

...komplette Frage anzeigen

4 Antworten

Du kannst ja erstmal die Koeffizienten der Wurzeln mit in die Wurzel ziehen. Also:

10 * W2 = W100 * W2 = W(100 * 2) = W200. Wenn du das dann quadrierst, kommst du eben auf 200. Bei dem Term "-2ab" der binomischen Formel kannst du im Notfall später immer noch teilweise radizieren.

die binomische formel ist ja (a-b) ^2 = a^2 - 2ab +b^2

für deine Formel hast ja jetzt 10W2 als a und 2W54 als b also kannst 10w2 quadrieren - 2 mal 10w2 mal 2w54 + 2w54 im quadrat

... ich hoff ich habs verständlich geschrieben... du musst einfach die beiden ausdrücke für a und b einsetzten

du kannst die binomische formel ja erst ausschreiben und dann alles miteinander multiplizieren, wenn du die wurzeln nicht in die formel einsetzen willst.

die wurzel muss aber da sein.

0

(10 W ( 2 ) - 2 W ( 54 ) ) ²

[Ausmultiplizieren gemäß zweiter binomischer Formel:

( a - b ) ² = a ² - 2 a b + b ²

mit: a = 10 * W ( 2 ) und b = 2 * W ( 54 )

also:]

= ( 10 W ( 2 ) ) ² - 2 * 10 * W ( 2 ) * 2 * W ( 54 ) + ( 2 W ( 54 ) ) ²

= 100 * 2 - 40 * W ( 2 ) * W ( 54 ) + 4 * 54

= 200 - 40 * W ( 54 * 2 ) + 216

= 416 - 415,692... = 0,307...

Was möchtest Du wissen?