Was ist wenn die 2. Ableitung bei extrema Null ist?

...komplette Frage anzeigen

6 Antworten

Eigentlich müsstest du das.

Mit den weiteren Berechnungen aber ist es immer so eine Sache. Dritte Ableitung wegen Krümmung, bei nur axⁿ gibt es auch Besonderheiten ...

Für den Hausgebrauch:
Wenn an einer Stelle die 1. und die 2. Ableitung gleich Null ist, besteht zumindest die Vermutung eines Sattelpunkts. Wenn man schon bei der 2. Ableitung ist, hat man meist Punkte genug, die Funktion zu skizzieren. Und dann sieht man auch auf einen Blick, ob da ein Sattelpunkt ist oder nicht.

Die allfälligen Nachuntersuchungen kann man dann immer noch vornehmen.
(Verifikation durch f '''(x) etc.)

---

das Extremum (Singular)
die Extrema (Plural)

Gegeben ist eine Funktion f eine Extremstelle der Funktion f muss notwendigerweise die folgende (notwendige) Bedingung erfüllen -> f'(x) = 0 Da nicht nur Extrema die waagerechte Tangente besitzen können (vgl. Sattelpunkt) muss noch die folgende (hinreichende) Bedingung untersucht werden. Vorzeichenwechsel (VZW) in f'(x) um xe Nehmen wir mal eine Beispielsfunktion.

f(x) = 1/2 x^2 +2x +3 -> f'(x) = x + 2 | 0 = x + 2 |-2
-2 = x ... x1 = -2 Das war die notwendige Bedingung

testen wir nun, ob diese Gleichung zweiter Ordnung auch kein Sattelpunkt ist (ist sowieso nicht der Fall da Funktion zweiter Ordnung ist erst der Fall bei Funktion dritter Ordnung :) ) 

Hinreichende Bedingung VZW: zwischen -2 liegt -3 und -1

f'(-3) = 1x(-3) + 2 = -1 < 0 f'(-1) = 1x(-1) + 2 = 1>0

Das heißt ... negative Steigung und dann eine positive... also Tiefpunkt. 

Hi,

ja, genau. An dieser Stelle "scheitert" die Rechnung mit der zweiten Ableitung und du musst das Vorzeichenwechselkriterium anwenden. Damit bekommst du mit Sicherheit eine Lösung.

Lg Lfy

Wir betrachten die Ableitungen, der Funktion an der Stelle x0

Wenn f ' (x0) = und  f '' (x0) ≠ 0, dann handelt es sich nicht um einen Extremwert

Wenn f ' (x0) = f'' (x0) = 0 und  f ''' (x0) ≠ 0, dann handelt es sich nicht um einen Extremwert, sondern um einen Sattelpunkt ( = Wendepunkt mit horizontaler Wendetangente

Wenn f ' (x0) = f'' (x0) = f '''(x0)  = 0 und  f '''' (x0) ≠ 0, dann handelt es sich wiederum um einen Extremwert

Wenn f ' (x0) = f'' (x0)  f''' (x0) = f '''' (x0) = 0 und  f ''''' (x0) ≠ 0, dann handelt es sich nicht um einen Extremwert, sondern um einen Sattelpunkt ( = Wendepunkt mit horizontaler Wendetangente

...  usw ... Immen eine Ableitung höher, bis Du eine Ableitung findest, die an der Stelle x0 ungleich Null ist. Handelt es sich dabei um eine gerade Ableitung, dann liegt ein Extrenwert vor, handelt es sich um eine ungerade Ableitung, dann handelt es sich um einen Sattelpunkt.

Wenn die 1. und 2. Ableitung 0 sind, dann ist es ein Sattelpunkt --> kein Extrempunkt

cba321 23.11.2016, 21:17

Das ist einfach falsch. Siehe z.B. x^4

0
CedyK 23.11.2016, 21:27
@cba321

Bei x^4 ist die erste 1. und 2. Ableitung auch nicht 0

0

Was genau willst du denn ausrechnen?

loveflowersyeah 23.11.2016, 21:13

Ein Extrema. Also Hoch- oder Tiefpunkt.

0
cba321 23.11.2016, 21:15
@loveflowersyeah

Ja, dann müssen weitere Untersuchungen gemacht werden, z.B. Vorzeichenwechselkriterium, oder aber du schaust dir die dritte / vierte usw. Ableitung an.

0

Was möchtest Du wissen?