Gegeben sei die Funktion f(x)=x^2-2x a) zeichnen sie den Graphen von f für -2<x<3 was bedeutet dass, also wie soll ich den graphen zeichnen?

... komplette Frage anzeigen

4 Antworten

Da hast du drei Möglichkeiten:

1. Ein paar Punkte für f(x)=x^2-2x ausrechnen (am besten gleich alle von -2 bis 3) und einfach einzeichnen und verbinden.

2. Die Funktion g(x)=x^2 aufzeichnen und die Funktion h(x)=-2x aufzeichnen (jeweils die ersten Paar werte berechnen und dann fortsetzen) und diese zwei Funktionen dann addieren und aufzeichnen.
Z.B. ist g(1)=1 und h(1)=-2, also zusammen ist dann y=-1 von x=1, das musst du dann aber nicht ausrechnen, sondern du kannst es im Graphen sehen und einfach so einzeichnen...

3. Hoch- und Tiefpunkte, Nullstellen und das Verhalten der Funktion gegen die Randwerte (-2, und 3) berechnen. Anhand diesen Angaben dann die Funktion aufzeichnen. (Bei anderen Funktionen wäre es ev. auch noch nötig, sie auf Wendepunkte, sowie Definitionslücken und Polstellen zu untersuchen, da diese Funktion keine hat, ist es aber hier nicht nötig.)

Ich nehme mal an, dass ihr das letzens in der Schule hattet, also würde ich es so machen, wie es dir am meisten Sinn zu machen scheint. Falls ihr gerade Ableitungen und Grenzwerte durchgenommen habt z.B. die 3. Möglichkeit.

Antwort bewerten Vielen Dank für Deine Bewertung

Am besten berechnest du f(-2) und f(3) und eventuelle Nullstellen und Hochpunkte/Tiefpunkte in dem Intervall.
Dann vielleicht noch den Funtionswert aller ganzzahligen x zwischen -2 und 3.
Dann solltest du einen guten Eindruck haben, wie die Funktion aussehen muss.

Antwort bewerten Vielen Dank für Deine Bewertung

Hallo

Du sollst den Graphen nur für die x-Werte -1 bis 2 zeichnen. Also nur einen Teil davon. Ich bin mir leider nicht mehr sicher ob -2 und 3 jetzt auch noch dabei sein müssen, aber ich glaube nicht, da x größer als -2 und kleiner als 3 sein muss. 

Ich hoffe, dass ich dir helfen konnte :)

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von YStoll
16.01.2016, 15:02

Du hast zwar recht, dass x echt größer als -2 sein muss (und nicht größer/gleich), aber das bedeutet noch lange nicht, dass man die Intervallgrenzen um 1 verringern könnte.
Was ist zum Beispiel mit -1.5?

0

Ich glaub du sollst die Funktion nicht komplett sondern nur im angegebenen Intervall zeichnen. Also zwischen -2 und 3 auf der X-Achse.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?