Berechne die Anzahl der dreistelligen Zahlen, in denen mindestens eine der Ziffern eine 5 ist?

4 Antworten

Das macht man am günstigsten mit dem Verfahren, das in der Wahrscheinlichkeitsrechnung "Umweg über die Gegenwahrscheinlichkeit" heißt. Das ist in solchen Fällen sehr viel schneller als der direkte Weg. (Einen hohen Berg zu umfahren ist meistens leichter als sich über den Gipfel zu quälen. Ein Umweg ist nicht immer länger im zeitlichen Sinne.)

Also:

  • wie viele dreistellige Zahlen gibt es insgesamt?
  • wie viele davon enthalten keine 5?
  • Zuletzt die Differenz berechnen
Woher ich das weiß:Hobby – Hobby, Studium, gebe Nachhilfe

Dreistellige Zahl XYZ

X=5 => 5YZ

Es gibt für Y und Z je 10 Möglichkeiten => 10^2 = 100

Y=5 => X5Z

Es gibt für X 9 Möglichkeiten (darf nicht mit 0 beginnen, sonst ist es keine dreistellige Zahl) und für Z 10 Möglichkeiten => 9*10 = 90

Z=5 => XY5

Gleich wie bei Y=5, ausser dass Z gesetzt ist und Y 10 Möglichkeiten hat => 9*10 = 90

100+90+90=280 Möglichkeiten

Wenn die dreistellige Zahl mit 0 beginnen darf wären es 3*100=300 Möglichkeiten

Ist doch easy du musst einfach alle Zahlen durchgehen... z.B 105, 115, 150, 151, 152, 205, 501,502 und so weiter aber ausrechnen darfst du das selber wie viele das sind😋

Was möchtest Du wissen?