Wie kann ich -3e^-3x + 6e = 0 lösen?

...komplette Frage anzeigen

7 Antworten

6e auf die andere Seite ziehen, durch -3 Teilen, ln anwenden, da du ja den Exponenten der e-Funktion haben möchtest und dann nochmal durch .3 Teilen.

-3 * e ^ (-3 * x) + 6 * e = 0 | : 3

- e ^ (-3 * x) + 2 * e = 0

2 * e = e ^ (-3 * x) | ln(...)

ln(2 * e) = -3 * x | : - 3

x = - (1 / 3) * ln(2 * e)

x = - (1 / 3) * (ln(2) + 1) (Logarithmengesetz angewendet)

Regeln: ln(e)=1 , ln(a*b)=ln(a)+ln(b)


-3e^(-3x) + 6e = 0

<=> 6e=3e^(-3x) | ln

<=> ln(6)+ln(e) = ln(3) - 3x

Den Rest schaffst du selbst :-)

-3e^(-3x) + 6e = 0 |-6e
-3e^(-3x) = -6e |/(-3)
e^(-3x) = 2e |ln
-3x = ln(2e) |/(-3)
x = 1/3 ln(2e)

GiftigerOsaft 29.06.2017, 19:49

Am Ende natürlich -1/3 ln(2e).

0

durch ln() kannst du die hochzahlen runterbringen, also das x.

ln(e^x) = x

einfach auf beiden Seiten den ln() anwenden. Zuerst +6e einfach auf die andere Seite bringen.

3e^-3x = 6e

e^-3x = 2e

-3x = ln(2e)

x=-1/3 * ln(2e)

Okay vielen Dank euch

Was möchtest Du wissen?