Wenn der Kern einer Matrix=0 ist die Matrix doch bijektiv oder?

... komplette Frage anzeigen

1 Antwort

Also mal langsam.

Der Kern einer Matrix besteht genau dann nur aus dem Nullelement, wenn die Matrix (bzw. die zugehörige Abbildung) injektiv ist. Wir haben also insbesondere eine Matrix mit vollem Spaltenrang, d.h. Rang = Spaltenrang = Anzahl der Spalten.

Bijektivität kann es ohnehin nur bei quadratischen Matrizen geben, denn hier muss Rang = Anzahl der Zeilen = Anzahl der Spalten gelten. Kurz gesagt braucht die Matrix also vollen Rang.

Vollen Rang hat eine quadratische Matrix genau dann, wenn ihre Determinante von 0 verschieden ist. Dieser Zusammenhang ist meistens leicht zu prüfen und daher zum Nachweis zu empfehlen.

Nun gilt weiterhin Zeilenrang = Spaltenrang für jede Matrix über einem Körper K. Es würde also für quadratische Matrizen auch genügen zu zeigen, dass der Kern nur aus dem Nullelement besteht. Dies ist nämlich gleichbedeutend zu vollem Spaltenrang.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Simonfragtjetzt
20.09.2016, 15:18

also bedeutet das das wenn der Kern nich 0 ist (ist quadartisch) die Funktion nicht bijektiv ist richtig verstanden?

1

Was möchtest Du wissen?