Unterschied zwischen Schwarzschild-Radius und EreignisHorizont?

5 Antworten

Vom Fragesteller als hilfreich ausgezeichnet

Hallo EinAlex6,

möchtest Du die einfache Antwort oder die richtige?

=D

Also die einfache Antwort lautet: Ja, das ist dasselbe.

Du ahnst es jetzt schon.... so einfach ist das nicht.

=(

Der Schwarzschildradius ist genau dann dasselbe wie der Ereignishorizont, wenn das SL ganz homogen ist und nicht rotiert.

Also dann, wenn wir einen Spezielfall ("Schwarzschild-Lösung") haben, der aber in der Natur so wahrscheinlich nicht vorkommt. Die Dinger rotieren in der Praxis wegen der Drehimpulserhaltung.

Der Schwarzschildradius berechnet sich

Rs = 2 * G * M /c², mit G = Gravitationskonstante

Obwohl man SL natürlich eigentlich relativistisch rechnen muss, ergibt sich diese eine Formel tatsächlich genauso, wenn man mit ganz normaler Newtonscher Mechanik rechnet:

Dies ist der Radius, ab dem die Fluchtgeschwindigkeit genau die Lichtgeschwindigkeit ist. Unterschreitet ein Objekt seinen Schwarzschildradius, ist es ein SL, denn von seiner Oberfläche kann kein Licht mehr entweichen.

Ein Ereignishorizont ist dagegen in der relativistischen Physik ganz allgemein eine Fläche, über die ein Austausch von Information nicht möglich ist. Es kann auch keine kausalen Zusammenhänge über einen Ereignishorizont hinweg geben.

Diese Fläche muss man für ein Schwarzes Loch im Allgemeinen mit den Formeln der ART berechnen. Für den Spezialfall eines statischen, also nicht rotierenden SL kommt genau die Kugel mit dem Schwarzschildradius heraus. Das ist dann also unsere "einfache Antwort".

Im allgemeinen Fall, bei dem SL Magnetfelder besitzen und rotieren, folgt der Ereigishorizont von außen betrachtet anderer Geometrie.

Wirklich beobachten kann man aber bei keinem der bekannten SL den Ereignishorizont. Hawking hat in einer theoretischen Arbeit neulich angezweifelt, dass unsere Vorstellungen vom Ereignishorizont aus Sicht der Quantenphysik korrekt sind. In der Presse wurde das oft falsch wiedergegeben mit dem Satz "Hawking stellt Schwarze Löcher infrage". Nein, hat er nicht, er hat nur geschrieben, dass der Ereignishorizont aufgrund bestimmter Quanteneffekte kein stabiles Gebilde wie in unserer Vorstellung sein könnte.

Grüße


Woher ich das weiß:Studium / Ausbildung – Diplom in Physik, Schwerpunkt Geo-/Astrophysik, FAU

Ok das ist echt kompliziert! Aber trotzdem danke ich glaube ich habe es durch dich verstanden! :)

0

Zusatzfrage:

Nehmen wir mal an, das Schwarze Loch sei homogen, rotiere aber.

Ist der Radius seines -- dann ja wohl auch kugelförmigen --Ereignishorizonts dann größer oder kleiner als sein Schwarzschild-Radius?

0

Der Schwarzschildradius rₛ ist zunächst einmal eine theoretisch-abstrakte Größe, die man jedem Körper zuordnen kann und die ausschließlich von seiner Masse abhängt. Das Verhältnis zwischen rₛ und der Radialkoordinate r, die im Newtonschen Grenzfall den Abstand eines Punktes P zum Schwerpunkt des Körpers darstellt, ist ein Maß für das Gravitationspotential in P. Allgemein markiert r eine Sphäre um den Körperschwerpunkt mit der Fläche 4πr² und ist im allgemeinen nicht der radiale Abstand, denn dieser ist etwas größer. Man kann das vielleicht mit einer Beule im Boden vergleichen; hier ist auch der tatsächliche radiale Abstand zum Mittelpunkt der Beule größer als die Entfernung "Luftlinie".

Ein Ereignishorizont ist eine Fläche, hinter die man nicht gucken kann, weil an dieser Fläche die Zeit und damit natürlich auch das Licht stillsteht - aus der Sicht eines äußeren Beobachters, wohl bemerkt. Bei einem nicht rotierenden »Massenpunkt« ist dieser durch rₛ gegeben, d.h. die Horizontfläche ist 4π·rₛ².

Die Radialkoordinate r ist nicht der Abstand zum Mittelpunkt; der wird für r = r ≤ rₛ nämlich zeitartig, wobei der Zeitpfeil nach innen gerichtet ist.

Ein Ereignishorizont kann übrigens auch künstlich erzeugt
werden, und zwar durch ununterbrochene gleichförmige Beschleunigung. Im Minkowski-Diagramm nimmt die Weltlinie eines gleichförmig beschleunigten Beobachters die Form einer Hyperbel an, natürlich einer Hyperbel mit einer v=c-Asymptote. Diese Asymptote stellt diejenigen möglichen Lichtsignale dar, die den Beobachter niemals erreichen, jedenfalls nicht, solange er weiter beschleunigt, sondern sich ihm nur asymptotisch nähern.

Ich war letztens ähnlich ratlos, wie du. Ich habe herumgeforscht und habe herausgefunden, dass es ein und dasselbe ist.

Viele Grüße
Farmyou2

Wie kann ein Radius das selbe wie ein Horizonts sein. Bitte mehr Details. :)

0

Also. Geometrisch betrachtet, ist der Ereignishorizont eine Kugel, deren Radius von dem Mittelpunkt des schwarzen Loches ausgeht.
Reicht dir diese Erklärung?

Viele Grüße
Farmyou2

0

Hi,

Schwarzschild-Radius und Ereignishorizont sind nicht Dasselbe, obwohl sie miteinander zusammenhängen. Der Ereignishorizont  ist die Grenze beim schwarzen Loch, bei der die Fluchtgeschwindigkeit gleich der Lichtgeschwindigkeit im Vakuum ist. Der Schwarzschild-Radius ist die Distanz zwischen der Singularität im Zentrum des schwarzen Loches und dem Ereignishorizont.

Na ja: Deine Erklärung bezieht sich nur auf die Tatsache, dass der Radius einer Kugel niemals identisch sein kann mit ihrer Oberfläche.

Da hat uteausmuenchen (s.o.) die Frage schon sehr viel besser beantwortet (denn sie hat verstanden, wie die Frage wirklich gemeint war).

1

Was möchtest Du wissen?