Umfang berechnen mit vorgegebenen Flächeninhalt?

6 Antworten

A = a * b = 900 >> a = 900/b

U = 2(a + b) → Min

U = 2(900/b + b)

U = 1800/b + 2b

U' = -1800/b² + 2

0 = -1800/b² + 2

2 * b² = 1800

b = 30

Man konnte es vermuten, es handelt sich um ein Quadrat .

Das Rechteck mit dem kleinsten Umfang ist das Quadrat, also Wurzel aus 900 m2 gibt eine Seitenlänge von 30 m (Umfang 120 m).

Du musst dir vorstellen, dass der Umfang immer größer wird, je mehr das Rechteck in die Länge gezogen wird, z.B. bis zu einem Kilometer Länge bei nur geringer Breite.

Woher ich das weiß:Studium / Ausbildung

Deine beiden Seiten sind x und y.

Dann giltund

Jetzt löst du die erste Gleichung nach einer der beiden Variablen auf und setzt den Wert in die zweite Gleichung für diese Variable ein:

Jetzt hängt dein Wert für den Umfang nur noch von x ab.

Die Funktionleitest du ab und setzt die Ableitung gleich 0, um die Extremwerte zu bestimmen:

Damit gilt

Ein Quadrat mit Seitenlänge 30 m hat damit unter allen Rechtecken mit Fläche 900 m² den geringsten Umfang.

Vielen Dank! Jetzt verstehe ich es schon besser :D

0
@Sourex47

Freut mich. Im Prinzip ist es immer das gleiche Schema. Du hast zwei Gleichungen, die von zwei Variablen abhängen. Für die eine (hier der Flächeninhalt) gibst du ein Ergebnis vor. Das ist dann die sogenannte Nebenbedingung, die du nach einer der beiden Variablen auflöst und in die andere Gleichung (die sogenannte Zielfunktion, hier der Umfang) einsetzt. Diese hängt dann nur noch von einer Variablen ab, sodass du diese ableiten, nullsetzen und die Extremwerte davon bestimmen kannst.

0

U = 2(a+b)

A = a*b = 900m²

Extremwertaufgabe! U minimieren.

Woher ich das weiß:Beruf – Studium der Informatik + Softwareentwickler seit 25 Jahren.

In der Regel liegt die Schwierigkeit darin die Zielfunktion zu ermitteln. Was hast du denn gegeben und was soll minimal werden?

Wenn du das weißt kann es losgehen.

Woher ich das weiß:Hobby – Schüler.

Was möchtest Du wissen?