Satz des Pythagoras, spitzwinkliges Dreieck berechenen! Brauche Hilfe, danke :)

...komplette Frage anzeigen

6 Antworten

Es gibt prinzipiell zwei Möglichkeiten: Die erste Möglichkeit wäre unter Zuhilfenahme der Winkel und dann bspw. dem Kosinussatz usw. Das habt ihr alles aber vermutlich noch nicht. In diesem Fall muss man versuchen, das Dreieck geschickt aufzuteilen, sodass zwei rechtwinklige Dreiecke entstehen. Und dann muss man den Pythagoras zweimal anwenden. Bei deiner Aufgabe zieht man am Besten eine zusätzliche Linie, die senkrecht zur 12cm-Linie verläuft und durch das untere linke Eck (bei der 6 cm-Linie) läuft. Jetzt muss man sich überlegen, wie diese neue Linie (nennen wir sie h) die 12cm-Linie unterteilt: Die Figur ist achsensymmetrisch, das hilft hier: Wenn man die Achse einzieht (also parallel zur Linie h in der Mitte der Figur), dann werden die 6cm- und die 12cm-Linie genau halbiert. Das heißt: Die Hälfte der 12cm-Linie ist so lang wie die Hälfte der 6cm-Linie plus einen "überstand"--> Dieser Überstand muss 3 cam sein. Damit teilt die Linie h die 12cm-Linie in 3cm (nach links) und 9cm (nach rechts). Damit hat man nun zwei rechtwinklige Dreiecke: Die Länge von h kann man nun mit dem Pythagoras aus der 10cm- und der 3cm-Linie berechnen, Dann berechnet man s wieder mit dem Pythagoras aus h un der 9cm-Linie. Am Ende erhält man s=13,1 cm

hannover96xd 12.03.2014, 21:36

Nun kriegst doch du die beste antwort :D

0

Es gibt noch eine weitere Möglichkeit.

  • zeichne a als horizontale Linie und beschrifte das linke Ende mit B und das rechte mit C

  • setzte an C einen Zirkel an mit r = b = 10 cm und zeichne einen Teilkreis der zur linken knapp über a beginnt und zur rechten knapp über einer gedachten Verlängerung von a endet

  • zeichne von B ausgehend eine Linie, die an einem beliebigen Punkt des Teilkreises endet. Das ist c.

  • zeichne von C ausgehend eine Linie zum Schnittpunkt von c mit dem Teilkreis. Das ist b.

  • beschrifte das Dreieck vollständig mit allen Seiten, Ecken und Winkeln und messe alle Winkel und c.

Wenn Du jetzt die letzten drei Punkte mehrfach wiederholst, wirst Du feststellen, daß c nicht ≤ 6,63 cm und nicht ≥ 15,62 cm sein darf, wenn Du ein spitzwinkliges Dreieck erhalten möchtest. Ist c ≤ 6,63 cm, so ist α ≥ 90°. Ist c ≥ 15,62 cm, so ist γ ≥ 90°.

Barney123 12.03.2014, 10:05

Ja, schön, nur hast Du die handgeschriebene Länge von 10 cm übersehen. Solche Fehler passiren in Lehrbüchern und Lehrer haben oft das Problem das selber zu überreisen, dass das Ganze dann nicht mehr zu rechnen ist. Mit der Angabe 10 cm (handgeschrieben) wird das Trapez aber symmetrisch und ist dann leicht berechenbar.

0
IMThomas 12.03.2014, 16:51
@Barney123

In der gestellten Frage steht nichts von einem Trapez und einer handgeschiebenen 10.

0

Bei Deiner Beispielrechnung braucht man noch den Winkel γ. Dann kann man die Höhe a - A konstruieren, wobei die Seite a in a' und a'' geteilt wird. Du kanst auch die Höhe b - B konstruieren, wobei die Seite a in b' und b'' geteilt wird. jetzt kannst Du den Satz des Pythagoras anwenden, um die Länge von c zu berechnen. Du kannst die Länge von c aber auch direkt mit dem Kosinussatz, der für alle Dreiecke gilt, berechnen.

c² = a² + b² - 2a * b * cosγ

Der folgende Link könnte Dir helfen.

http://www.schulminator.com/mathematik/trigonometrie

IMThomas 10.03.2014, 19:14

Seite b wird natürlich in b' und b'' geteilt!

0
IMThomas 10.03.2014, 19:24
@hannover96xd

Die letzten beiden Beispiele im Link sind für Dich von Interesse.

0

Hallo Hannover,

Der Satz des Pythagoras gilt nur in Rechtwinkligen dreiecken. Er ist auf Dreiecke, die keinen Rechten Winkel haben, nicht direkt anwendbar. Es gibt allerdings Sonderfälle in denen man mit dem Satz von Pythagoras die Höhe berechnen kann, aber der bezieht sihc dann wieder auf ein rechtwinkliges Dreieck (die Höhe steht ja senkrecht auf der jeweiligen Grundlinie).

hannover96xd 10.03.2014, 18:36

Wie soll man das dann aber berechnen?

0
AhmedMA 10.03.2014, 18:39
@hannover96xd

Im grunde is es so, dass man sich immer rechtwinklige Dreiecke denkt, d.h. andere Formen in rechtwinklige Dreiecke teilen.

0
hannover96xd 10.03.2014, 18:40
@AhmedMA

Achso, dann ist das ja einfach...aber nur theoretisch, wie soll man das dann bei der aufgabe machen......bild kommt gleich....

0
hannover96xd 10.03.2014, 18:48
@AhmedMA

http://s1.directupload.net/images/140310/oiqshbqo.jpg

die aufgabe siehst du da ja, dann kann man ja theoretisch den rot umnkreisten bereich in ein rechteck teilen, das man auch ausrechnen kann, dadurch, dass das rechteck aber nicht in der Mitte ist, kann man ja schlecht mal zwei nehmen.....schwer zu erklären was ich meine.............

0
AhmedMA 10.03.2014, 18:50
@hannover96xd

du meinst rechtwinkliges dreieck, oder? musst du nur s ausrechnen?

0
hannover96xd 10.03.2014, 18:51
@AhmedMA

ja nur s ausrechnen und ja natürlich rechtwinkliges dreieck, verschrieben!

0
AhmedMA 10.03.2014, 19:08
@hannover96xd

Es gilt ja a²+b²=c². In diesem Fall teilst du s in zwei teile; den auf der 6cm und den auf der 12cm seite. a muss beides mal gleich b. also ist s wurzel(1/2c²) auf der 6cm seite + wurzel(1/2c²) auf der 12cm seite: wurzel(18)+wurzel(72)=s=12,73cm

0
hannover96xd 10.03.2014, 19:09
@AhmedMA

Du hast es nicht 2mal geschickt, aber egal! Oh, doch in dem anderem kommentar, zu spät gesehen^^

0
hannover96xd 10.03.2014, 19:15
@hannover96xd

Danke! Ich habe es verstanden, dafür bekommst du auch morgen ein stern! (kann man ja erst 24h danach vergeben)

0
arrgh 10.03.2014, 23:17
@AhmedMA

Tut mir leid, aber die Antwort ist falsch: Du gehst davon aus, dass im Schnittpunkt innerhalb der Figur 90°-Winkel sind. Das ist aber nicht der Fall. Es sind nämlich - wie man zeigen kann - etwa 66,3°

0
arrgh 10.03.2014, 23:34
@arrgh

Ups, sorry, kleiner Fehler: Es sind 68,9°.

0

Hallo Hannover,

Die Aufgabe läst sich mit Pythagoras lösen, wenn man zwei neue, rechtwinklige Dreiecke einführt:

Und zwar ist das ja ein symmetrisches Trapez! Wenn man von der Ecke, in der S auf die 6 cm-Seite trifft eine Senkrechte zur Grundlinie 12cm zieht, entstehen zwei neue, rechtwinklige Dreiecke, damti lässt sich dass dann ausrechnen! Mit dem einen Dreieck kann man den Abstand zwischen den beiden Grundlinien 6cm und 12 cm berechnen:

10²=3²+h²

Damit ist h= Wurzel (10²-3²)

und damit s²=9²+h² ODER s=Wurzel(9²+10²-3²) einfach eintippen, fertig!

Brauchst Du noch ein Bild, damit Du Dir das vorstellen kannst?

IMThomas 11.03.2014, 18:20

ICH brauche ein Bild! Denn ohne die Kenntnis über die Dimension wenigstens eines Winkels kann die Seite c jede beliebige Länge zwischen 6,63 cm und 15,62 cm haben. Bei ≤ 6,63 cm und ≥ 15,62 cm erhält man kein spitzwinkliges Dreieck mehr.

0
Barney123 12.03.2014, 09:30
@IMThomas

Hallo Thomas,

Über den Link findest Du das Bild

h steht senkrecht auf der Grundlinie 12 cm und der Dachlinie 6 cm, damit ist das Trapez symmetrisch, weil die beiden Seiten je 10 cm sind.

http://fbe.am/rsW

0

Pythagoras nur für rechtwinklige Dreiecke !

Was möchtest Du wissen?