Satz des Pythagoras (Abstand)?
Hallo Leute! Ich habe gerade ein paar Aufgaben zum Thema „Satz des Pythagoras“ durchgerechnet und nun sitze ich seit ca. 5 min an so einer Aufgabe (5) wie diese und weiß nicht wie ich dabei vorgehen soll. Es wäre natürlich mega lieb, wenn ihr mir vllt sagen könnten wie man hier vorgeht am besten mit einer Lösung! Danke im Voraus!!!
3 Antworten
Zum Ausparken muss das Auto diagonal in die Lücke passen. Die Diagonale muss also kleiner sein, als 4,7m + 0,3m+0,3 = 5,3m, denn das ist die Länge der Parklücke.
Wenn das Auto 4,7m lang und 2m breit ist, dann ist die Diagonale nach Pythagoras SQR(4,7^2 + 2^2) = 5,11m.
Das ist kleiner als 5,3m also passt das Auto diagonal hinein und kann ausparken.
Es ist ja gar keine genaue Lösung verlangt. Es ist einfach so, dass man trotzdem ausparken kann. Für das muss man einfach ganz viel mal ein- und ausschlagen.
Ja das kann man schon berechnen, auf was ich jetzt aber ganz klar keine Lust habe sorry. Aber müsste man für das nicht den Höchstwinkel der Räder des Autos wissen?
Nein, weil mit genug Kurbeln schaffst du es immer das Auto diagonal zu stellen. Wenn die Diagonale des Autos aber länger als die Lücke ist wars das.
stimmt, so habe ich das noch nie gesehen.
Ich dachte man muss noch ausrechnen, wie viel man aus- und einschlagen muss, bis man draussen ist. Dafür hätte man den Winkel gebraucht.
Du musst die Länge der Fahrzeudiagonale berechnen. Wenn die länger als 4,7m + 0,6m ist, wird es etwas schwieriger. Die Länge der Diagonale berechnet du mit dem Satz des Pythagoras.
Naja, das ist mir schon klar. Man müsste aber schon diese Aussage belegen mit einer Rechnung!