Gleichung? Ich bin doppelt so alt wie meine Schwester und zusammen sind wir 21. Wie lautet die Rechnung?
Matheaufgaben
8 Antworten
- Kurzbezeichnungen für relevante Größen festlegen.
- Mit den Informationen aus dem Text Gleichungen aufstellen.
- Das Gleichungssystem lösen.
- Eine Antwort formulieren.
============
Zunächst einmal kann man Kurzbezeichnungen für die relevanten Größen einführen. Beispielsweise...
Dann kann man mit den Informationen aus dem Text entsprechende Gleichungen aufstellen...
Ich bin doppelt so alt wie meine Schwester [...]
[...] zursammen [sic] sind wir 21 [...]
Damit hat man dann ein Gleichungssystem mit den beiden Gleichungen x = 2y und x + y = 21 und den beiden Unbekannten x und y. Es gibt verschiedene Verfahren das Gleichungssystem zu lösen. Im konkreten Fall würde ich sagen, dass sich das Einsetzungsverfahren anbietet: Setze x = 2y in x + y = 21 ein, um eine Gleichung zu erhalten, die nur noch von einer Unbekannten (y) abhängt, nach der man die Gleichung dann auflösen kann.
Damit hat man nun den Wert von y (= Alter der Schwester) erhalten. Den Wert für x kann man erhalten, indem man den y-Wert in die bereits nach x aufgelöste Gleichung x = 2y einsetzt.
Ergebnis: Du bist 14 Jahre alt. Deine Schwester ist 7 Jahre alt.
21 durch (2 plus 1)
winer ist 7 - einer 14
x = 2y
x + y = 21
2y + y = 21
3y = 21
y = 21/3 = 7
x = 2y = 2*7 = 14
x ist das Alter der jüngeren Schester, y das Alter der älteren Schwester.
- Gleichung 1: "das Alter beider Schwestern zusammen ist 21 Jahre": x + y = 21.
- Gleichung 2: "die ältere Schwester ist doppelt so alt wie die jüngere Schwester": y = 2x.
Mit Gleichung 2 das y in der Gleichung 1 substiuiert:
- x + y = 21
- x + 2x = 21
- 3x = 21
- x = 7
Lösung 1: Die jüngere Schwester ist 7 Jahre alt.
Dies in Gleichung 2 eingesetzt:
- y = 2x.
- y = 2*7
- y = 14
Lösung 2: Die ältere Schwester ist 14 Jahre alt.
Ich bitte um Nachfrage, wenn das nicht 100% klar ist.