Ist genau definiert, was man in der Quantenmechanik unter Messung versteht?
Ich wiederhole gerade ein wenig Quantenmechanik, da ich eine Vorlesung über Quantencomputing belegt habe: dabei tauchen Fragen auf, die ich mir in meinem Studium (wo ich einfach durch musste) nicht gestellt habe, nun aber ziemlich vordergründig erscheinen. Eine davon ist das ur-alte Thema "Messung" bzw. "Kollaps des Zustandes": Ich habe das NIE in der Tiefe verstanden...Das Thema Messung wurde in meinem Studium irgendwo zwischen den Zeilen stillschweigend hineingeschummelt, ohne je darüber zu reden, was darunter zu verstehen sei (ich denke sogar, dass Fragen dazu dem damaligen Professor unangenehm waren, denn er wich immer aus, wenn das Thema angesprochen wurde). Besteht nun eigentlich wissenschaftlicher Konsens darüber, was man in der Quantenmechanik unter " Messung " verstehen soll? Scheinbar wird ja postuliert, dass ein makroskopischer Messaparat A sich mit dem zu messenden Zustand Ψ auf wundersamerweise verschränkt, und daraufhin ein Kollaps des Zustandes auf einen Eigenzustand des Instruments + Messobjekt |Ai>|Ψi> stattfindet. Letzterer wird oft auf Dekohärenz aufgrund Wechselwirkungen mit der Umgebung zurückgeführt, aber es könnte ja auch sein, dass makroskopische Objekte sich tatsächlich in einem Überlagerungszustand befinden. Aus der zeitlichen unitären Entwicklung eines Zustandes folgt keineswegs, dass es zu einem Kollaps kommen muss. Warum kommt es aber dazu? Gibt es dafür eine plausible Erklärung? Ich verstehe zumindest nicht, wie Dekohärenz das Thema zufriedenstellend erklären soll. Alle Erklärungen die ich bisher gefunden habe sind meiner Ansicht nach Zirkelschlüsse (auch in den Arbeiten von Zeh finde ich leider nicht die ultimative Erleuchtung). Weiß jemand mehr? Bin für Litereturempfehlungen dankbar.