Physik: Durch Rechnung belegen, dass Präzisionspendeluhr am Äquator falsch geht?

... komplette Frage anzeigen

3 Antworten

T ist die Zeit, die das Pendel für eine Schwingung braucht.

(Ich schreib hier mal auf, was ich denke, in derselben Reihenfolge.)

An einem Tag führt das Pendel in unseren Breitengraden eine bestimmte Anzahl Schwingungen durch.

Am Äquator eine andere Anzahl.

Die Anzahl als solche kannst du zwar nicht ausrechnen, weil eine Größe fehlt (z. B. die Länge des Pendels), aber das Verhältnis der beiden Anzahlen kannst du berechnen.

Letztlich geht es aber darum, welche Zeit die Uhr nach einem Tag am Äquator anzeigt.

Hierzu musst du die Anzahl von Schwingungen am Äquator nach einem Tag berechnen - das geht natürlich nicht in absoluten Zahlen, aber in Einheiten von angezeigten Tagen.

Aus diesen angezeigten Tagen kannst du die Differenz in der angezeigten Zeit sofort berechnen.

Antwort bewerten Vielen Dank für Deine Bewertung

In Mitteleuropa gilt für die Pendeluhr  t = 2h = 7200s = n · T . Wenn ich das von Dir ermittelte Verhältnis T/T´= 0,998 zugrunde lege, dann misst die Pendeluhr die selben Zeit  die Zeit  t´= 7200s · 0,998 = 7185,6s am Äquator. Das sind ca.14 Sekunden weniger als die in Mitteleuropa gemessene Zeit  t = 7200s.

Die Pendeluhr geht am also Äquator ca. 14 Sekunden nach. Die Abweichung von den in der Aufgabenstellung vorgestellten 11 Sekunden beruht m.E. auf abweichende Ortsfaktoren.

LG

Antwort bewerten Vielen Dank für Deine Bewertung

Hilft Dir das weiter (?):

T = A * sin (Ω * t) = A * sin α =2 * π * Wurzel( l/g)

Wenn nicht hätte ich noch mehr Formeln, doch die gehen wahrscheinlich in die falsche richtung.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?