Mathe Facharbeit Analyse von Glücksspielen

...komplette Frage anzeigen

4 Antworten

A. Eine bedingte Wahrscheinlichkeit ist die Wahrscheinlichkeit eines Zufallsereignisses, das vom Ergebnis eines vorhergehenden Zufallsereignis abhängt.

So ein Standardbeispiel ist "Ziehen ohne Zurücklegen": Wenn Du drei Lose in einer Trommel hast, und zwei davon sind Nieten, dann ist im ersten Zug die Wahrscheinlichkeit 2/3, eine Niete zu ziehen. Wenn du aber schon eine Niete gezogen hast, dann ist in einem zweiten Zug die Wahrscheinlichkeit, noch die andere Niete zu ziehen, nur noch 1/2. Diese zweite Wahrscheinlichkeit ist eine bedingte Wahrscheinlichkeit, weil sie vom Ergebnis des ersten Zuges abhängt: Wenn du im ersten Zug den Gewinn gezogen hättest, wäre im zweiten Zug die Wahrscheinlichkeit, eine Nieten zu ziehen, 100% = 1.

B. Schöner als >http://de.wikipedia.org/wiki/Binomialkoeffizient kann ich es nun auch nicht. Den dort erwähnten binomischen Lehrsatz lernte ich unter der Bezeichnung "Binomialsatz" kennen.

Ein recht häufig anwendbare Wahrscheinlichkeitsverteilung ist die Binomialverteilung, zu deren Berechnung ebenfalls der Binomialkoeffizient benötigt wird; diese hat auch ihren eigenen Wikipedia-Artikel.

Kniffel- Wahrscheinlichkeiten in best. Spielsituationen- Binomialkoeffizienten notwendig? hallo, kurz zu mir, ich bin 18, schreib eine facharbeit zum thema: Best. Spielsituationen beim Kniffel.. bin in einem 12er GK!

so, folgende situation ist gegeben: nach dem 1. wurf: 1,1,2,3,5,

natürlich wird noch 2mal geworfen, wobei nur noch folgende spieloptionen übrig bleiben ( hab ich als voraussetzung gestellt) 2er, 3er, dreierpasch, full house, gr. straße, kniffel,

so hier meine wahrscheinlichkeiten + rechenwege:

2er( wenn ich nur die 2 behalte): 1⋅16⋅16⋅16⋅1=1216

5er(behalte nur die 5): siehe 2er!

dreierpasch (wenn ich die beiden 1en behalte): wahrscheinlichkeit: 36 (weiß nich wie ich das rechen soll, habs rechnerisch nicht hinbekommen, ergebnis ist aber wohl logisch)

dreierpasch (wenn ich die beiden 1en behalte und die 5) wahrscheinlichkeit 26 (problem s.⊙)

full house: (wenn ich nur die beiden 1en halte): 56⋅16⋅26=5108 full house: (wenn ich die beiden 1en und eine beliebige halte): 16⋅26=118

gr. Straße: (wenn ich 1,2,3,5 halte): wahrscheinlichkeit logischerweise: 16 gr. Straße: (wenn ich 2,3,5 halte) 36⋅16=112

so das war´s erstmal! ich bin mir sicher, da sind einige fehler drin, außerdem hab ich da noch eine frage: wenn man dann von 2würfen hintereinander ausgeht(das war ja nur einer) kann ich doch einfach die wahrscheinlichkeit verdoppeln bzw. addieren oder? dann wäre aber die wahrscheinlichkeite beim dreierpasch (s.⊙) theoretisch 100%?!? wie drücke ich mich da aus? ich hab noch sachen zur binomialkoeffizienz gefunden, sind die bei solchen rechenwegen von belangen?( wahrscheinlichkeit für den ausgangswurf ist nämlich 5über26543/ 65 (das habe ich eigentl. verstanden, nur dieses 5über2 irritiert mich! wieso wird es dort benutzt?

so das wars erstmal, ich hoffe meine fragen sind konkret genug.. vielen dank an alle, die sich mühe machen mir zu helfen;-)

so long, Fabe1991

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."

Es gibt bereits mehrere Facharbeiten, die sich genau mit dieser Thematik auseinandersetzen. Texas Hold 'em-Poker scheint in diesem Zusammenhang besonders beliebt. Falls immer noch von Interesse, würde ich mir ein paar Beispiele anschauen. Nach kurzem "googlen" finden sich (z.B.) diese Arbeiten:

  1. http:// www. hausarbeiten . de/faecher/vorschau/205507.html (Monopoly)

  2. http:// school.truleand . de/market-item/mathematische-gegenuberstellung/ (Texas Hold 'em)

Die letzte Seite scheint neu zu sein bzw. habe ich noch nicht viel davon gehört.

Darf ich dich fragen, nach welchem Plan die Analyse durchgeführt werden soll?

Wie genau möchtest du die beiden Begriffe dort integrieren?

Was möchtest Du wissen?